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Abstract
Today, shared libraries are ubiquitous. Developers use them for multiple reasons and create
them just as they would create application code. This is a problem, though, since on many
platforms some additional techniques must be applied even to generate decent code. Even more
knowledge is needed to generate optimized code. This paper introduces the required rules and
techniques. In addition, it introduces the concept of ABI (Application Binary Interface) stability
and shows how to manage it.

1 Preface

For a long time, programmers collected commonly used
code in libraries so that code could be reused. This saves
development time and reduces errors since reused code
only has to be debugged once. With systems running
dozens or hundreds of processes at the same time reuse
of the code at link-time solves only part of the problem.
Many processes will use the same pieces of code which
they import for libraries. With the memory management
systems in modern operating systems it is also possible
to share the code at run-time. This is done by loading the
code into physical memory only once and reusing it in
multiple processes via virtual memory. Libraries of this
kind are called shared libraries.

The concept is not very new. Operating system designers
implemented extensions to their system using the infras-
tructure they used before. The extension to the OS could
be done transparently for the user. But the parts the user
directly has to deal with created initially problems.

The main aspect is the binary format. This is the for-
mat which is used to describe the application code. Long
gone are the days that it was sufficient to provide a mem-
ory dump. Multi-process systems need to identify differ-
ent parts of the file containing the program such as the
text, data, and debug information parts. For this, binary
formats were introduced early on. Commonly used in the
early Unix-days were formats such as a.out or COFF.
These binary formats were not designed with shared li-
braries in mind and this clearly shows.
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1.1 A Little Bit of History

The binary format used initially for Linux was an a.out

variant. When introducing shared libraries certain design
decisions had to be made to work in the limitations of
a.out. The main accepted limitation was that no reloca-
tions are performed at the time of loading and afterward.
The shared libraries have to exist in the form they are
used at run-time on disk. This imposes a major restric-
tion on the way shared libraries are built and used: every
shared library must have a fixed load address; otherwise it
would not be possible to generate shared libraries which
do not have to be relocated.

The fixed load addresses had to be assigned and this has
to happen without overlaps and conflicts and with some
future safety by allowing growth of the shared library.
It is therefore necessary to have a central authority for
the assignment of address ranges which in itself is a ma-
jor problem. But it gets worse: given a Linux system
of today with many hundred of DSOs (Dynamic Shared
Objects) the address space and the virtual memory avail-
able to the application gets severely fragmented. This
would limit the size of memory blocks which can be dy-
namically allocated which would create unsurmountable
problems for some applications. It would even have hap-
pened by today that the assignment authority ran out of
address ranges to assign, at least on 32-bit machines.

We still have not covered all the drawbacks of the a.out
shared libraries. Since the applications using shared li-
braries should not have to be relinked after changing a
shared library it uses, the entry points, i.e., the function
and variable addresses, must not change. This can only
be guaranteed if the entry points are kept separate from
the actual code since otherwise limits on the size of a
function would be hard-coded. A table of function stubs
which call the actual implementation was the solution
used on Linux. The static linker got the address of each

1

mailto:drepper@gmail.com


function stub from a special file (with the filename ex-
tension .sa). At run-time a file ending in .so.X.Y.Z

was used and it had to correspond to the used .sa file.
This in turn requires that an allocated entry in the stub
table always had to be used for the same function. The
allocation of the table had to be carefully taken care of.
Introducing a new interface meant appending to the ta-
ble. It was never possible to retire a table entry. To avoid
using an old shared library with a program linked with a
newer version, some record had to be kept in the applica-
tion: the X and Y parts of the name of the .so.X.Y.Z

suffix was recorded and the dynamic linker made sure
minimum requirements were met.

The benefits of the scheme are that the resulting program
runs very fast. Calling a function in such a shared li-
braries is very efficient even for the first call. It can
be implemented with only two absolute jumps: the first
from the user code to the stub, and the second from the
stub to the actual code of the function. This is probably
faster than any other shared library implementation, but
its speed comes at too high a price:

1. a central assignment of address ranges is needed;

2. collisions are possible (likely) with catastrophic re-
sults;

3. the address space gets severely fragmented.

For all these reasons and more, Linux converted early on
to using ELF (Executable Linkage Format) as the binary
format. The ELF format is defined by the generic spec-
ification (gABI) to which processor-specific extensions
(psABI) are added. As it turns out the amortized cost of
function calls is almost the same as for a.out but the
restrictions are gone.

1.2 The Move To ELF

For programmers the main advantage of the switch to
ELF was that creating ELF shared libraries, or in ELF-
speak DSOs, becomes very easy. The only difference be-
tween generating an application and a DSO is in the final
link command line. One additional option (--shared in
the case of GNU ld) tells the linker to generate a DSO
instead of an application, the latter being the default. In
fact, DSOs are little more than a special kind of binary;
the difference is that they have no fixed load address and
hence require the dynamic linker to actually become ex-
ecutable. With Position Independent Executable (PIEs)
the difference shrinks even more.

This, together with the introduction of GNU Libtool which
will be described later, has led to the wide adoption of
DSOs by programmers. Proper use of DSOs can help
save large amounts of resources. But some rules must be
followed to get any benefits, and some more rules have to

be followed to get optimal results. Explaining these rules
will be the topic of a large portion of this paper.

Not all uses of DSOs are for the purpose of saving re-
sources. DSOs are today also often used as a way to
structure programs. Different parts of the program are
put into separate DSOs. This can be a very powerful tool,
especially in the development phase. Instead of relink-
ing the entire program it is only necessary to relink the
DSO(s) which changed. This is often much faster.

Some projects decide to keep many separate DSOs even
in the deployment phase even though the DSOs are not
reused in other programs. In many situations it is cer-
tainly a useful thing to do: DSOs can be updated indi-
vidually, reducing the amount of data which has to be
transported. But the number of DSOs must be kept to a
reasonable level. Not all programs do this, though, and
we will see later on why this can be a problem.

Before we can start discussing all this some understand-
ing of ELF and its implementation is needed.

1.3 How Is ELF Implemented?

The handling of a statically linked application is very
simple. Such an application has a fixed load address
which the kernel knows. The load process consists sim-
ply of making the binary available in the appropriate ad-
dress space of a newly created process and transferring
control to the entry point of the application. Everything
else was done by the static linker when creating the exe-
cutable.

Dynamically linked binaries, in contrast, are not com-
plete when they are loaded from disk. It is therefore
not possible for the kernel to immediately transfer con-
trol to the application. Instead some other helper pro-
gram, which obviously has to be complete, is loaded as
well. This helper program is the dynamic linker. The task
of the dynamic linker is it, to complete the dynamically
linked application by loading the DSOs it needs (the de-
pendencies) and to perform the relocations. Then finally
control can be transferred to the program.

This is not the last task for the dynamic linker in most
cases, though. ELF allows the relocations associated with
a symbol to be delayed until the symbol is needed. This
lazy relocation scheme is optional, and optimizations dis-
cussed below for relocations performed at startup imme-
diately effect the lazy relocations as well. So we ignore
in the following everything after the startup is finished.

1.4 Startup: In The Kernel

Starting execution of a program begins in the kernel, nor-
mally in the execve system call. The currently executed
code is replaced with a new program. This means the ad-
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typedef struct typedef struct
{ {
Elf32 Word p type; Elf64 Word p type;
Elf32 Off p offset; Elf64 Word p flags;
Elf32 Addr p vaddr; Elf64 Off p offset;
Elf32 Addr p paddr; Elf64 Addr p vaddr;
Elf32 Word p filesz; Elf64 Addr p paddr;
Elf32 Word p memsz; Elf64 Xword p filesz;
Elf32 Word p flags; Elf64 Xword p memsz;
Elf32 Word p align; Elf64 Xword p align;

} Elf32 Phdr; } Elf64 Phdr;

Figure 1: ELF Program Header C Data Structure

dress space content is replaced by the content of the file
containing the program. This does not happen by sim-
ply mapping (using mmap) the content of the file. ELF
files are structured and there are normally at least three
different kinds of regions in the file:

• Code which is executed; this region is normally not
writable;

• Data which is modified; this region is normally not
executable;

• Data which is not used at run-time; since not needed
it should not be loaded at startup.

Modern operating systems and processors can protect mem-
ory regions to allow and disallow reading, writing, and
executing separately for each page of memory.1 It is
preferable to mark as many pages as possible not writable
since this means that the pages can be shared between
processes which use the same application or DSO the
page is from. Write protection also helps to detect and
prevent unintentional or malignant modifications of data
or even code.

For the kernel to find the different regions, or segments
in ELF-speak, and their access permissions, the ELF file
format defines a table which contains just this informa-
tion, among other things. The ELF Program Header ta-
ble, as it is called, must be present in every executable
and DSO. It is represented by the C types Elf32 Phdr

and Elf64 Phdr which are defined as can be seen in fig-
ure 1.

To locate the program header data structure another data
structure is needed, the ELF Header. The ELF header is
the only data structure which has a fixed place in the file,
starting at offset zero. Its C data structure can be seen
in figure 2. The e phoff field specifies where, counting
from the beginning of the file, the program header table
starts. The e phnum field contains the number of entries
in the program header table and the e phentsize field

1A memory page is the smallest entity the memory subsystem of
the OS operates on. The size of a page can vary between different
architectures and even within systems using the same architecture.

contains the size of each entry. This last value is useful
only as a run-time consistency check for the binary.

The different segments are represented by the program
header entries with the PT LOAD value in the p type field.
The p offset and p filesz fields specify where in the
file the segment starts and how long it is. The p vaddr

and p memsz fields specify where the segment is located
in the the process’ virtual address space and how large the
memory region is. The value of the p vaddr field itself
is not necessarily required to be the final load address.
DSOs can be loaded at arbitrary addresses in the virtual
address space. But the relative position of the segments
is important. For pre-linked DSOs the actual value of the
p vaddr field is meaningful: it specifies the address for
which the DSO was pre-linked. But even this does not
mean the dynamic linker cannot ignore this information
if necessary.

The size in the file can be smaller than the address space
it takes up in memory. The first p filesz bytes of the
memory region are initialized from the data of the seg-
ment in the file, the difference is initialized with zero.
This can be used to handle BSS sections2, sections for
uninitialized variables which are according to the C stan-
dard initialized with zero. Handling uninitialized vari-
ables this way has the advantage that the file size can be
reduced since no initialization value has to be stored, no
data has to be copied from disc to memory, and the mem-
ory provided by the OS via the mmap interface is already
initialized with zero.

The p flags finally tells the kernel what permissions to
use for the memory pages. This field is a bitmap with the
bits given in the following table being defined. The flags
are directly mapped to the flags mmap understands.

2A BSS section contains only NUL bytes. Therefore they do not
have to be represented in the file on the storage medium. The loader
just has to know the size so that it can allocate memory large enough
and fill it with NUL
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typedef struct typedef struct
{ {
unsigned char e ident[EI NIDENT]; unsigned char e ident[EI NIDENT];
Elf32 Half e type; Elf64 Half e type;
Elf32 Half e machine; Elf64 Half e machine;
Elf32 Word e version; Elf64 Word e version;
Elf32 Addr e entry; Elf64 Addr e entry;
Elf32 Off e phoff; Elf64 Off e phoff;
Elf32 Off e shoff; Elf64 Off e shoff;
Elf32 Word e flags; Elf64 Word e flags;
Elf32 Half e ehsize; Elf64 Half e ehsize;
Elf32 Half e phentsize; Elf64 Half e phentsize;
Elf32 Half e phnum; Elf64 Half e phnum;
Elf32 Half e shentsize; Elf64 Half e shentsize;
Elf32 Half e shnum; Elf64 Half e shnum;
Elf32 Half e shstrndx; Elf64 Half e shstrndx;

} Elf32 Ehdr; } Elf64 Ehdr;

Figure 2: ELF Header C Data Structure

p flags Value mmap flag Description
PF X 1 PROT EXEC Execute Permission
PF W 2 PROT WRITE Write Permission
PF R 4 PROT READ Read Permission

After mapping all the PT LOAD segments using the ap-
propriate permissions and the specified address, or after
freely allocating an address for dynamic objects which
have no fixed load address, the next phase can start. The
virtual address space of the dynamically linked executable
itself is set up. But the binary is not complete. The kernel
has to get the dynamic linker to do the rest and for this
the dynamic linker has to be loaded in the same way as
the executable itself (i.e., look for the loadable segments
in the program header). The difference is that the dy-
namic linker itself must be complete and should be freely
relocatable.

Which binary implements the dynamic linker is not hard-
coded in the kernel. Instead the program header of the
application contains an entry with the tag PT INTERP.
The p offset field of this entry contains the offset of
a NUL-terminated string which specifies the file name of
this file. The only requirement on the named file is that
its load address does not conflict with the load address of
any possible executable it might be used with. In gen-
eral this means that the dynamic linker has no fixed load
address and can be loaded anywhere; this is just what dy-
namic binaries allow.

Once the dynamic linker has also been mapped into the
memory of the to-be-started process we can start the dy-
namic linker. Note it is not the entry point of the applica-
tion to which control is transfered to. Only the dynamic
linker is ready to run. Instead of calling the dynamic
linker right away, one more step is performed. The dy-
namic linker somehow has to be told where the applica-
tion can be found and where control has to be transferred

to once the application is complete. For this a structured
way exists. The kernel puts an array of tag-value pairs on
the stack of the new process. This auxiliary vector con-
tains beside the two aforementioned values several more
values which allow the dynamic linker to avoid several
system calls. The elf.h header file defines a number of
constants with a AT prefix. These are the tags for the
entries in the auxiliary vector.

After setting up the auxiliary vector the kernel is finally
ready to transfer control to the dynamic linker in user
mode. The entry point is defined in e entry field of the
ELF header of the dynamic linker.

1.5 Startup in the Dynamic Linker

The second phase of the program startup happens in the
dynamic linker. Its tasks include:

• Determine and load dependencies;

• Relocate the application and all dependencies;

• Initialize the application and dependencies in the
correct order.

In the following we will discuss in more detail only the
relocation handling. For the other two points the way
for better performance is clear: have fewer dependen-
cies. Each participating object is initialized exactly once
but some topological sorting has to happen. The identify
and load process also scales with the number dependen-
cies; in most (all?) implementations this does not scale
linearly.
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The relocation process is normally3 the most expensive
part of the dynamic linker’s work. It is a process which is
asymptotically at least O(R+nr) where R is the number
of relative relocations, r is the number of named reloca-
tions, and n is the number of participating DSOs (plus
the main executable). Deficiencies in the ELF hash ta-
ble function and various ELF extensions modifying the
symbol lookup functionality may well increase the factor
to O(R + rn log s) where s is the number of symbols.
This should make clear that for improved performance it
is significant to reduce the number if relocations and sym-
bols as much as possible. After explaining the relocation
process we will do some estimates for actual numbers.

1.5.1 The Relocation Process

Relocation in this context means adjusting the application
and the DSOs, which are loaded as the dependencies, to
their own and all other load addresses. There are two
kinds of dependencies:

• Dependencies to locations which are known to be
in the own object. These are not associated with a
specific symbol since the linker knows the relative
position of the location in the object.

Note that applications do not have relative reloca-
tions since the load address of the code is known
at link-time and therefore the static linker is able to
perform the relocation.

• Dependencies based on symbols. The reference of
the definition is generally, but not necessarily, in a
different object than the definition.

The implementation of relative relocations is easy. The
linker can compute the offset of the target destination in
the object file at link-time. To this value the dynamic
linker only has to add the load address of the object and
store the result in the place indicated by the relocation. At
runtime the dynamic linker has to spend only a very small
and constant amount of time which does not increase if
more DSOs are used.

The relocation based on a symbol is much more compli-
cated. The ELF symbol resolution process was designed
very powerful so that it can handle many different prob-
lems. All this powerful functionality adds to the com-
plexity and run-time costs, though. Readers of the fol-
lowing description might question the decisions which
led to this process. We cannot argue about this here; read-
ers are referred to discussions of ELF. Fact is that symbol
relocation is a costly process and the more DSOs partic-
ipate or the more symbols are defined in the DSOs, the
longer the symbol lookup takes.

3We ignore the pre-linking support here which in many cases can
reduce significantly or even eliminate the relocation costs.

The result of any relocation will be stored somewhere
in the object with the reference. Ideally and generally
the target location is in the data segment. If code is in-
correctly generated by the user, compiler, or linker relo-
cations might modify text or read-only segments. The
dynamic linker will handle this correctly if the object is
marked, as required by the ELF specification, with the
DF TEXTREL set in the DT FLAGS entry of the dynamic
section (or the existence of the DT TEXTREL flag in old
binaries). But the result is that the modified page can-
not be shared with other processes using the same object.
The modification process itself is also quite slow since
the kernel has to reorganize the memory handling data
structures quite a bit.

1.5.2 Symbol Relocations

The dynamic linker has to perform a relocation for all
symbols which are used at run-time and which are not
known at link-time to be defined in the same object as the
reference. Due to the way code is generated on some ar-
chitectures it is possible to delay the processing of some
relocations until the references in question are actually
used. This is on many architectures the case for calls
to functions. All other kinds of relocations always have
to be processed before the object can be used. We will
ignore the lazy relocation processing since this is just a
method to delay the work. It eventually has to be done
and so we will include it in our cost analysis. To actu-
ally perform all the relocations before using the object is
used by setting the environment variable LD BIND NOW to
a non-empty value. Lazy relocation can be disabled for
an individual object by adding the -z now option to the
linker command line. The linker will set the DF BIND NOW

flag in the DT FLAGS entry of the dynamic section to
mark the DSO. This setting cannot be undone without
relinking the DSOs or editing the binary, though, so this
option should only be used if it is really wanted.

The actual lookup process is repeated from start for each
symbol relocation in each loaded object. Note that there
can be many references to the same symbol in differ-
ent objects. The result of the lookup can be different
for each of the objects so there can be no short cuts ex-
cept for caching results for a symbol in each object in
case more than one relocation references the same sym-
bol. The lookup scope mentioned in the steps below is an
ordered list of a subset of the loaded objects which can
be different for each object itself. The way the scope is
computed is quite complex and not really relevant here so
we refer the interested reader to the ELF specification and
section 1.5.4. Important is that the length of the scope is
normally directly dependent on the number of loaded ob-
jects. This is another factor where reducing the number
of loaded objects is increasing performance.

There are today two different methods for the lookup pro-
cess for a symbol. The traditional ELF method proceeds
in the following steps:
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Histogram for bucket list length in section [ 2] ’.hash’ (total of 1023 buckets):
Addr: 0x42000114 Offset: 0x000114 Link to section: [ 3] ’.dynsym’
Length Number % of total Coverage

0 132 12.9%
1 310 30.3% 15.3%
2 256 25.0% 40.6%
3 172 16.8% 66.0%
4 92 9.0% 84.2%
5 46 4.5% 95.5%
6 14 1.4% 99.7%
7 1 0.1% 100.0%

Average number of tests: successful lookup: 1.994080
unsuccessful lookup: 1.981427

Figure 3: Example Output for eu-readelf -I libc.so

Histogram for bucket list length in section [ 2] ’.hash’ (total of 191 buckets):
Addr: 0x00000114 Offset: 0x000114 Link to section: [ 3] ’.dynsym’
Length Number % of total Coverage

0 103 53.9%
1 71 37.2% 67.0%
2 16 8.4% 97.2%
3 1 0.5% 100.0%

Average number of tests: successful lookup: 1.179245
unsuccessful lookup: 0.554974

Figure 4: Example Output for eu-readelf -I libnss files.so

1. Determine the hash value for the symbol name.

2. In the first/next object in the lookup scope:

2.a Determine the hash bucket for the symbol us-
ing the hash value and the hash table size in
the object.

2.b Get the name offset of the symbol and using
it as the NUL-terminated name.

2.c Compare the symbol name with the reloca-
tion name.

2.d If the names match, compare the version names
as well. This only has to happen if both, the
reference and the definition, are versioned. It
requires a string comparison, too. If the ver-
sion name matches or no such comparison
is performed, we found the definition we are
looking for.

2.e If the definition does not match, retry with the
next element in the chain for the hash bucket.

2.f If the chain does not contain any further ele-
ment there is no definition in the current ob-
ject and we proceed with the next object in
the lookup scope.

3. If there is no further object in the lookup scope the
lookup failed.

Note that there is no problem if the scope contains more
than one definition of the same symbol. The symbol
lookup algorithm simply picks up the first definition it
finds. Note that a definition in a DSO being weak has no
effects. Weak definitions only play a role in static linking.
Having multiple definitions has some perhaps surprising
consequences. Assume DSO ‘A’ defines and references
an interface and DSO ‘B’ defines the same interface. If
now ‘B’ precedes ‘A’ in the scope, the reference in ‘A’
will be satisfied by the definition in ‘B’. It is said that
the definition in ‘B’ interposes the definition in ‘A’. This
concept is very powerful since it allows more special-
ized implementation of an interface to be used without
replacing the general code. One example for this mech-
anism is the use of the LD PRELOAD functionality of the
dynamic linker where additional DSOs which were not
present at link-time are introduced at run-time. But inter-
position can also lead to severe problems in ill-designed
code. More in this in section 1.5.4.

Looking at the algorithm it can be seen that the perfor-
mance of each lookup depends, among other factors, on
the length of the hash chains and the number of objects
in the lookup scope. These are the two loops described
above. The lengths of the hash chains depend on the
number of symbols and the choice of the hash table size.
Since the hash function used in the initial step of the algo-
rithm must never change these are the only two remaining
variables. Many linkers do not put special emphasis on
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selecting an appropriate table size. The GNU linker tries
to optimize the hash table size for minimal lengths of the
chains if it gets passed the -O option (note: the linker, not
the compiler, needs to get this option).

A note on the current implementation of the hash table op-
timization. The GNU binutils linker has a simple minded
heuristic which often favors small table sizes over short
chain length. For large projects this might very well in-
crease the startup costs. The overall memory consumption
will be sometimes significantly reduced which might com-
pensate sooner or later but it is still advised to check the
effectiveness of the optimization. A new linker implemen-
tation is going to be developed and it contains a better algo-
rithm.

To measure the effectiveness of the hashing two numbers
are important:

• The average chain length for a successful lookup.

• The average chain length for an unsuccessful lookup.

It might be surprising to talk about unsuccessful lookups
here but in fact they are the rule. Note that “unsuccess-
ful” means only unsuccessful in the current objects. Only
for objects which implement almost everything they get
looked in for is the successful lookup number more im-
portant. In this category there are basically only two ob-
jects on a Linux system: the C library and the dynamic
linker itself.

Some versions of the readelf program compute the value
directly and the output is similar to figures 3 and 4. The
data in these examples shows us a number of things. Based
on the number of symbols (2027 versus 106) the chosen
table size is radically different. For the smaller table the
linker can afford to “waste” 53.9% of the hash table en-
tries which contain no data. That’s only 412 bytes on
a gABI-compliant system. If the same amount of over-
head would be allowed for the libc.so binary the table
would be 4 kilobytes or more larger. That is a big dif-
ference. The linker has a fixed cost function integrated
which takes the table size into account.

The increased relative table size means we have signifi-
cantly shorter hash chains. This is especially true for the
average chain length for an unsuccessful lookup. The av-
erage for the small table is only 28% of that of the large
table.

What these numbers should show is the effect of reduc-
ing the number of symbols in the dynamic symbol ta-
ble. With significantly fewer symbols the linker has a
much better chance to counter the effects of the subopti-
mal hashing function.

Another factor in the cost of the lookup algorithm is con-
nected with the strings themselves. Simple string com-
parison is used on the symbol names which are stored

in a string table associated with the symbol table data
structures. Strings are stored in the C-format; they are
terminated by a NUL byte and no initial length field is
used. This means string comparisons has to proceed until
a non-matching character is found or until the end of the
string. This approach is susceptible to long strings with
common prefixes. Unfortunately this is not uncommon.

namespace some_namespace {
class some_longer_class_name {

int member_variable;
public:
some_longer_class_name (int p);
int the_getter_function (void);

};
}

The name mangling scheme used by the GNU C++ com-
piler before version 3.0 used a mangling scheme which
put the name of a class member first along with a descrip-
tion of the parameter list and following it the other parts
of the name such as namespaces and nested class names.
The result is a name which distinguishable in the begin-
ning if the member names are different. For the example
above the mangled names for the two members functions
look like this figure 5.

In the new mangling scheme used in today’s gcc versions
and all other compilers which are compatible with the
common C++ ABI the names start with the namespaces
and class names and end with the member names. Fig-
ure 6 shows the result for the little example. The mangled
names for the two member functions differs only after the
43rd character. This is really bad performance-wise if the
two symbols should fall into the same hash bucket.4

Ada has similar problems. The standard Ada library for
gcc has all symbols prefixed with ada , then the pack-
age and sub-package names, followed by function name.
Figure 7 shows a short excerpt of the list of symbols from
the library. The first 23 character are the same for all the
names.

The length of the strings in both mangling schemes is
worrisome since each string has to be compared com-
pletely when the symbol itself is searched for. The names
in the example are not extra ordinarily long either. Look-
ing through the standard C++ library one can find many
names longer than 120 characters and even this is not the
longest. Other system libraries feature names longer than
200 characters and complicated, “well designed” C++
projects with many namespaces, templates, and nested
classes can feature names with more than 1,000 charac-

4Some people suggested “Why not search from the back?”. Think
about it, these are C strings, not PASCAL strings. We do not know the
length and therefore would have to read every single character of the
string to determine the length. The result would be worse.
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__Q214some_namespace22some_longer_class_namei
the_getter_function__Q214some_namespace22some_longer_class_name

Figure 5: Mangled names using pre-gcc 3 scheme

_ZN14some_namespace22some_longer_class_nameC1Ei
_ZN14some_namespace22some_longer_class_name19the_getter_functionEv

Figure 6: Mangled names using the common C++ ABI scheme

ada__calendar__delays___elabb
ada__calendar__delays__timed_delay_nt
ada__calendar__delays__to_duration

Figure 7: Names from the standard Ada library

ters. One plus point for design, but minus 100 points for
performance.

With the knowledge of the hashing function and the de-
tails of the string lookup let us look at a real-world exam-
ple: OpenOffice.org. The package contains 144 separate
DSOs. During startup about 20,000 relocations are per-
formed. Many of the relocations are performed as the
result of dlopen calls and therefore cannot be optimized
away by using prelink [7]. The number of string compar-
isons needed during the symbol resolution can be used
as a fair value for the startup overhead. We compute an
approximation of this value now.

The average chain length for unsuccessful lookup in all
DSOs of the OpenOffice.org 1.0 release on IA-32 is 1.1931.
This means for each symbol lookup the dynamic linker
has to perform on average 72× 1.1931 = 85.9032 string
comparisons. For 20,000 symbols the total is 1,718,064
string comparisons. The average length of an exported
symbol defined in the DSOs of OpenOffice.org is 54.13.
Even if we are assuming that only 20% of the string is
searched before finding a mismatch (which is an opti-
mistic guess since every symbol name is compared com-
pletely at least once to match itself) this would mean a to-
tal of more then 18.5 million characters have to be loaded
from memory and compared. No wonder that the startup
is so slow, especially since we ignored other costs.

To compute number of lookups the dynamic linker per-
forms one can use the help of the dynamic linker. If the
environment variable LD DEBUG is set to symbols one
only has to count the number of lines which start with
symbol=. It is best to redirect the dynamic linker’s out-
put into a file with LD DEBUG OUTPUT. The number of
string comparisons can then be estimate by multiplying
the count with the average hash chain length. Since the
collected output contains the name of the file which is

looked at it would even be possible to get more accurate
results by multiplying with the exact hash chain length
for the object.

Changing any of the factors ‘number of exported sym-
bols’, ‘length of the symbol strings’, ‘number and length
of common prefixes’,‘number of DSOs’, and ‘hash table
size optimization’ can reduce the costs dramatically. In
general the percentage spent on relocations of the time
the dynamic linker uses during startup is around 50-70%
if the binary is already in the file system cache, and about
20-30% if the file has to be loaded from disk.5 It is there-
fore worth spending time on these issues and in the re-
mainder of the text we will introduce methods to do just
that. So far to remember: pass -O1 to the linker to gener-
ate the final product.

1.5.3 The GNU-style Hash Table

All the optimizations proposed in the previous section
still leave symbol lookup as a significant factor. A lot
of data has to be examined and loading all this data in the
CPU cache is expensive. As mentioned above, the orig-
inal ELF hash table handling has no more flexibility so
any solution would have to replace it. This is what the
GNU-style hash table handling does. It can peacefully
coexist with the old-style hash table handling by having
its own dynamic section entry (DT GNU HASH). Updated
dynamic linkers will use the new hash table insted of the
old, therefore provided completely transparent backward
compatibility support. The new hash table implementa-
tion, like the old, is self-contained in each executable and
DSO so it is no problem to have binaries with the new
and some with only the old format in the same process.

The main cost for the lookup, especially for certain bina-

5These numbers assume pre-linking is not used.
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ries, is the comparison of the symbol names. If the num-
ber of comparisons which actually have to be performed
can be reduced we can gain big. A second possible opti-
mization is the layout of the data. The old-style hash table
with its linked list of symbol table entries is not necessar-
ily good to the CPU cache. CPU caches work particularly
well when the used memory locations are consecutive. A
linked list can jump wildly around and render CPU cache
loading and prefetching less effective.

The GNU-style hash tables set out to solve these prob-
lem and more. Since compatibility with existing runtime
environments could be maintained by providing the old-
style hash tables in parallel no restrictions of the changes
were needed. The new lookup process is therefore slightly
different:

1. Determine the hash value for the symbol name.

2. In the first/next object in the lookup scope:

2.a The hash value is used to determine whether
an entry with the given hash value is present
at all. This is done with a 2-bit Bloom fil-
ter.6. If the filter indicates there is no such
definition the next object in the lookup scope
is searched.

2.b Determine the hash bucket for the symbol us-
ing the hash value and the hash table size in
the object. The value is a symbol index.

2.c Get the entry from the chain array correspond-
ing to the symbol index. Compare the value
with the hash value of the symbol we are try-
ing to locate. Ignore bit 0.

2.d If the hash value matches, get the name off-
set of the symbol and using it as the NUL-
terminated name.

2.e Compare the symbol name with the reloca-
tion name.

2.f If the names match, compare the version names
as well. This only has to happen if both, the
reference and the definition, are versioned. It
requires a string comparison, too. If the ver-
sion name matches or no such comparison
is performed, we found the definition we are
looking for.

2.g If the definition does not match and the value
loaded from the hash bucket does not have
bit 0 set, continue with the next entry in the
hash bucket array.

2.h If bit 0 is set there are no further entry in the
hash chain we proceed with the next object in
the lookup scope.

3. If there is no further object in the lookup scope the
lookup failed.

6http://en.wikipedia.org/wiki/Bloom filter

This new process seems more complicated. Not only is
this not really the case, it is also much faster. The number
of times we actually have to compare strings is reduced
significantly. The Bloom filter alone usually filters out
80% or more (in many cases 90+%) of all lookups. I.e.,
even in the case the hash chains are long no work is done
since the Bloom filter helps to determine that there will be
no match. This is done with one signal memory access.

Second, comparing the hash value with that of the symbol
table entry prevents yet more string comparisons. Each
hash chain can contain entries with different hash value
and this simple word comparison can filter out a lot of
duplicates. There are rarely two entries with the same
hash value in a hash chain which means that an unsuc-
cessful string comparison is rare. The probability for this
is also increased by using a different hash function than
the original ELF specification dictates. The new function
is much better in spreading the values out over the value
range of 32-bit values.

The hash chain array is organized to have all entries for
the same hash bucket follow each other. There is no
linked list and therefore the cache utilization is much bet-
ter.

Only if the Bloom filter and the hash function test suc-
ceed do we access the symbol table itself. All symbol ta-
ble entries for a hash chain are consecutive, too, so in case
we need to access more than one entry the CPU cache
prefetching will help here, too.

One last change over the old format is that the hash ta-
ble only contains a few, necessary records for undefined
symbol. The majority of undefined symbols do not have
to appear in the hash table. This in some cases signif-
icantly reduces the possibility of hash collisions and it
certainly increases the Bloom filter success rate and re-
duces the average hash chain length. The result are sig-
nificant speed-ups of 50% or more in code which cannot
depend on pre-linking [7] (pre-linking is always faster).

This does not mean, though, that the optimization tech-
niques described in the previous section are irrelevant.
They still should very much be applied. Using the new
hash table implementation just means that not optimizing
the exported and referenced symbols will not have a big
effect on performance as it used to have.

The new hash table format was introduced in Fedora
Core 6. The entire OS, with a few deliberate exceptions,
is created without the compatibility hash table by using
--hash-style=gnu. This means the binaries cannot be
used on systems without support for the new hash table for-
mat in the dynamic linker. Since this is never a goal for any
of the OS releases making this decision was a no-brainer.
The result is that all binaries are smaller than with the sec-
ond set of hash tables and in many cases even smaller than
binaries using only the old format.
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Going back to the OpenOffice.org example, we can make
some estimates about the speedup. If the Bloom filter is
able to filter out a low 80% of all lookups and the prob-
ability of duplicates hash values is a high 15% we only
have to actually compare on average 72 × 0.2 × 0.15 ×
1.1931 = 2.58 strings. This is an improvement of a fac-
tor of 33. Adding to this to improved memory handling
and respect for the CPU cache we have even higher gains.
In real world examples we can reduce the lookup costs so
that programs start up 50% faster or more.

1.5.4 Lookup Scope

The lookup scope has so far been described as an ordered
list of most loaded object. While this is correct it has also
been intentionally vague. It is now time to explain the
lookup scope in more detail.

The lookup scope consists in fact of up to three parts.
The main part is the global lookup scope. It initially
consists of the executable itself and all its dependencies.
The dependencies are added in breadth-first order. That
means first the dependencies of the executable are added
in the order of their DT NEEDED entries in the executable’s
dynamic section. Then the dependencies of the first de-
pendency are added in the same fashion. DSOs already
loaded are skipped; they do not appear more than once
on the list. The process continues recursively and it will
stop at some point since there are only a limited number
of DSOs available. The exact number of DSOs loaded
this way can vary widely. Some executables depend on
only two DSOs, others on 200.

If an executable has the DF SYMBOLIC flag set (see sec-
tion 2.2.7) the object with the reference is added in front
of the global lookup scope. Note, only the object with
the reference itself is added in front, not its dependen-
cies. The effects and reasons for this will be explained
later.

A more complicated modification of the lookup scope
happens when DSOs are loaded dynamic using dlopen.
If a DSO is dynamically loaded it brings in its own set
of dependencies which might have to be searched. These
objects, starting with the one which was requested in the
dlopen call, are appended to the lookup scope if the
object with the reference is among those objects which
have been loaded by dlopen. That means, those objects
are not added to the global lookup scope and they are
not searched for normal lookups. This third part of the
lookup scope, we will call it local lookup scope, is there-
fore dependent on the object which has the reference.

The behavior of dlopen can be changed, though. If the
function gets passed the RTLD GLOBAL flag, the loaded
object and all the dependencies are added to the global
scope. This is usually a very bad idea. The dynami-
cally added objects can be removed and when this hap-
pens the lookups of all other objects is influenced. The

entire global lookup scope is searched before the dynam-
ically loaded object and its dependencies so that defini-
tions would be found first in the global lookup scope ob-
ject before definitions in the local lookup scope. If the
dynamic linker does the lookup as part of a relocation
this additional dependency is usually taken care of auto-
matically, but this cannot be arranged if the user looks up
symbols in the lookup scope with dlsym.

And usually there is no reason to use RTLD GLOBAL. For
reasons explained later it is always highly advised to cre-
ate dependencies with all the DSOs necessary to resolve
all references. RTLD GLOBAL is often used to provide im-
plementations which are not available at link time of a
DSO. Since this should be avoided the need for this flag
should be minimal. Even if the programmer has to jump
through some hoops to work around the issues which are
solved by RTLD GLOBAL it is worth it. The pain of debug-
ging and working around problems introduced by adding
objects to the global lookup scope is much bigger.

The dynamic linker in the GNU C library knows since
September 2004 one more extension. This extension helps
to deal with situations where multiple definitions of sym-
bols with the same name are not compatible and there-
fore cannot be interposed and expected to work. This is
usally a sign of design failures on the side of the peo-
ple who wrote the DSOs with the conflicting definitions
and also failure on the side of the application writer who
depends on these incompatible DSOs. We assume here
that an application app is linked with a DSO libone.so

which defines a symbol duplicate and that it dynami-
cally loads a DSO libdynamic.so which depends on
another DSO libtwo.so which also defines a symbol
duplicate. When the application starts it might have a
global scope like this:

app→ libone.so→ libdl.so→ libc.so

If now libtwo.so is loaded, the additional local scope
could be like this:

libdynamic.so→ libtwo.so→ libc.so

This local scope is searched after the global scope, pos-
sibly with the exception of libdynamic.so which is
searched first for lookups in this very same DSO if the
DF DYNAMIC flag is used. But what happens if the sym-
bol duplicate is required in libdynamic.so? After
all we said so far the result is always: the definition in
libone.so is found since libtwo.so is only in the lo-
cal scope which is searched after the global scope. If the
two definitions are incompatible the program is in trou-
ble.

This can be changed with a recent enough GNU C library
by ORing RTLD DEEPBIND to the flag word passed as the

10 Version 4.1.2 How To Write Shared Libraries



second parameter to dlopen. If this happens, the dy-
namic linker will search the local scope before the global
scope for all objects which have been loaded by the call
to dlopen. For our example this means the search or-
der changes for all lookups in the newly loaded DSOs
libdynamic.so and libtwo.so, but not for libc.so
since this DSO has already been loaded. For the two af-
fected DSOs a reference to duplicate will now find the
definition in libtwo.so. In all other DSOs the definition
in libone.so would be found.

While this might sound like a good solution for handling
compatibility problems this feature should only be used
if it cannot be avoided. There are several reasons for this:

• The change in the scope affects all symbols and all
the DSOs which are loaded. Some symbols might
have to be interposed by definitions in the global
scope which now will not happen.

• Already loaded DSOs are not affected which could
cause unconsistent results depending on whether
the DSO is already loaded (it might be dynamically
loaded, so there is even a race condition).

• LD PRELOAD is ineffective for lookups in the dy-
namically loaded objects since the preloaded ob-
jects are part of the global scope, having been added
right after the executable. Therefore they are looked
at only after the local scope.

• Applications might expect that local definitions are
always preferred over other definitions. This (and
the previous point) is already partly already a prob-
lem with the use of DF SYMBOLIC but since this
flag should not be used either, the arguments are
still valid.

• If any of the implicitly loaded DSOs is loaded ex-
plicitly afterward, its lookup scope will change.

• Lastly, the flag is not portable.

The RTLD DEEPBIND flag should really only be used as
a last resort. Fixing the application to not depend on the
flag’s functionality is the much better solution.

1.5.5 GOT and PLT

The Global Offset Table (GOT) and Procedure Linkage
Table (PLT) are the two data structures central to the ELF
run-time. We will introduce now the reasons why they
are used and what consequences arise from that.

Relocations are created for source constructs like

extern int foo;

extern int bar (int);
int call_bar (void) {

return bar (foo);
}

The call to bar requires two relocations: one to load the
value of foo and another one to find the address of bar.
If the code would be generated knowing the addresses of
the variable and the function the assembler instructions
would directly load from or jump to the address. For IA-
32 the code would look like this:

pushl foo
call bar

This would encode the addresses of foo and bar as part
of the instruction in the text segment. If the address is
only known to the dynamic linker the text segment would
have to be modified at run-time. According to what we
learned above this must be avoided.

Therefore the code generated for DSOs, i.e., when using
-fpic or -fPIC, looks like this:

movl foo@GOT(%ebx), %eax
pushl (%eax)
call bar@PLT

The address of the variable foo is now not part of the in-
struction. Instead it is loaded from the GOT. The address
of the location in the GOT relative to the PIC register
value (%ebx) is known at link-time. Therefore the text
segment does not have to be changed, only the GOT.7

The situation for the function call is similar. The function
bar is not called directly. Instead control is transferred
to a stub for bar in the PLT (indicated by bar@PLT). For
IA-32 the PLT itself does not have to be modified and can
be placed in a read-only segment, each entry is 16 bytes
in size. Only the GOT is modified and each entry consists
of 4 bytes. The structure of the PLT in an IA-32 DSO
looks like this:

.PLT0:pushl 4(%ebx)
jmp *8(%ebx)
nop; nop

7There is one more advantage of using this scheme. If the instruc-
tion would be modified we would need one relocation per load/store
instruction. By storing the address in the GOT only one relocation is
needed.
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nop; nop
.PLT1:jmp *name1@GOT(%ebx)

pushl $offset1
jmp .PLT0@PC

.PLT2:jmp *name2@GOT(%ebx)
pushl $offset2
jmp .PLT0@PC

This shows three entries, there are as many as needed,
all having the same size. The first entry, labeled with
.PLT0, is special. It is used internally as we will see.
All the following entries belong to exactly one function
symbol. The first instruction is an indirect jump where
the address is taken from a slot in the GOT. Each PLT en-
try has one GOT slot. At startup time the dynamic linker
fills the GOT slot with the address pointing to the sec-
ond instruction of the appropriate PLT entry. I.e., when
the PLT entry is used for the first time the jump ends at
the following pushl instruction. The value pushed on
the stack is also specific to the PLT slot and it is the off-
set of the relocation entry for the function which should
be called. Then control is transferred to the special first
PLT entry which pushes some more values on the stack
and finally jumps into the dynamic linker. The dynamic
linker has do make sure that the third GOT slot (offset
8) contains the address of the entry point in the dynamic
linker. Once the dynamic linker has determined the ad-
dress of the function it stores the result in the GOT entry
which was used in the jmp instruction at the beginning of
the PLT entry before jumping to the found function. This
has the effect that all future uses of the PLT entry will not
go through the dynamic linker, but will instead directly
transfer to the function. The overhead for all but the first
call is therefore “only” one indirect jump.

The PLT stub is always used if the function is not guaran-
teed to be defined in the object which references it. Please
note that a simple definition in the object with the refer-
ence is not enough to avoid the PLT entry. Looking at
the symbol lookup process it should be clear that the def-
inition could be found in another object (interposition)
in which case the PLT is needed. We will later explain
exactly when and how to avoid PLT entries.

How exactly the GOT and PLT is structured is architecture-
specific, specified in the respective psABI. What was said
here about IA-32 is in some form applicable to some
other architectures but not for all. For instance, while the
PLT on IA-32 is read-only it must be writable for other
architectures since instead of indirect jumps using GOT
values the PLT entries are modified directly. A reader
might think that the designers of the IA-32 ABI made a
mistake by requiring a indirect, and therefore slower, call
instead of a direct call. This is no mistake, though. Hav-
ing a writable and executable segment is a huge security
problem since attackers can simply write arbitrary code
into the PLT and take over the program. We can anyhow
summarize the costs of using GOT and PLT like this:

• every use of a global variable which is exported
uses a GOT entry and loads the variable values in-
directly;

• each function which is called (as opposed to refer-
enced as a variable) which is not guaranteed to be
defined in the calling object requires a PLT entry.
The function call is performed indirectly by trans-
ferring control first to the code in the PLT entry
which in turn calls the function.

• for some architectures each PLT entry requires at
least one GOT entry.

Avoiding a jump through the PLT therefore removes on
IA-32 16 bytes of text and 4 bytes of data. Avoiding the
GOT when accessing a global variable saves 4 bytes of
data and one load instruction (i.e., at least 3 bytes of code
and cycles during the execution). In addition each GOT
entry has a relocation associated with the costs described
above.

1.5.6 Running the Constructors

Once the relocations are performed the DSOs and the ap-
plication code can actually be used. But there is one more
thing to do: optionally the DSOs and the application must
be initialized. The author of the code can define for each
object a number of initialization functions which are run
before the DSO is used by other code. To perform the ini-
tialization the functions can use code from the own object
and all the dependencies. To make this work the dynamic
linker must make sure the objects are initialized in the
correct order, i.e., the dependencies of an object must be
initialized before the object.

To guarantee that the dynamic linker has to perform a
topological sort in the list of objects. This sorting is no
linear process. Like all sorting algorithms the run-time is
at least O(n log n) and since this is actually a topological
sort the value is even higher. And what is more: since
the order at startup need not be the same as the order
at shutdown (when finalizers have to be run) the whole
process has to be repeated.

So we have again a cost factor which is directly depend-
ing on the number of objects involved. Reducing the
number helps a bit even though the actual costs are nor-
mally much less than that of the relocation process.

At this point it is useful to look at the way to correctly
write constructors and destructors for DSOs. Some sys-
tems had the convention that exported functions named
init and fini are automatically picked as constructor

and destructor respectively. This convention is still fol-
lowed by GNU ld and using functions with these names
on a Linux system will indeed cause the functions used
in these capacities. But this is totally, 100% wrong!
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By using these functions the programmer overwrites what-
ever initialization and destruction functionality the sys-
tem itself is using. The result is a DSO which is not
fully initialized and this sooner or later leads to a catas-
trophy. The correct way of adding constructors and de-
structors is by marking functions with the constructor
and destructor function attribute respectively.

void
__attribute ((constructor))
init_function (void)
{

...
}

void
__attribute ((destructor))
fini_function (void)
{

...
}

These functions should not be exported either (see sec-
tions 2.2.2 and 2.2.3) but this is just an optimization.
With the functions defined like this the runtime will ar-
range that they are called at the right time, after perform-
ing whatever initialization is necessary before.

1.6 Summary of the Costs of ELF

We have now discussed the startup process and how it is
affected by the form of the binaries. We will now summa-
rize the various factors so that we later on can determine
the benefits of an optimization more easily.

Code Size As everywhere, a reduced size for code with
the same semantics often means higher efficiency
and performance. Smaller ELF binaries need less
memory at run-time.

In general the compiler will always generate the
best code possible and we do not cover this further.
But it must be known that every DSO includes a
certain overhead in data and code. Therefore fewer
DSOs means smaller text.

Number of Objects The fact that a smaller number of
objects containing the same functionality is bene-
ficial has been mentioned in several places:

• Fewer objects are loaded at run-time. This
directly translates to fewer system call. In the
GNU dynamic linker implementation loading
a DSO requires at least 8 system calls, all of
them can be potentially quite expensive.

• Related, the application and the dependencies
with additional dependencies must record the
names of the dependencies. This is not a ter-
ribly high cost but certainly can sum up if
there are many dozens of dependencies.

• The lookup scope grows. This is one of the
dominating factors in cost equation for the re-
locations.

• More objects means more symbol tables which
in turn normally means more duplication. Un-
defined references are not collapsed into one
and handling of multiple definitions have to
be sorted out by the dynamic linker.
Moreover, symbols are often exported from a
DSO to be used in another one. This would
not have to happen if the DSOs would be merged.

• The sorting of initializers/finalizers is more
complicated.

• In general does the dynamic linker have some
overhead for each loaded DSO per process.
Every time a new DSO is requested the list of
already loaded DSOs must be searched which
can be quite time consuming since DSOs can
have many aliases.

Number of Symbols The number of exported and unde-
fined symbols determines the size of the dynamic
symbol table, the hash table, and the average hash
table chain length. The normal symbol table is not
used at run-time and it is therefore not necessary
to strip a binary of it. It has no impact on perfor-
mance.

Additionally, fewer exported symbols means fewer
chances for conflicts when using pre-linking (not
covered further).

Length of Symbol Strings Long symbol lengths cause
often unnecessary costs. A successful lookup of a
symbol must match the whole string and compar-
ing dozens or hundreds of characters takes time.
Unsuccessful lookups suffer if common prefixes
are long as in the new C++ mangling scheme. In
any case do long symbol names cause large string
tables which must be present at run-time and thereby
is adding costs in load time and in use of address
space which is an issue for 32-bit machines.

Number of Relocations Processing relocations constitute
the majority of work during start and therefore any
reduction is directly noticeable.

Kind of Relocations The kind of relocations which are
needed is important, too, since processing a rela-
tive relocation is much less expensive than a nor-
mal relocation. Also, relocations against text seg-
ments must be avoided.

Placement of Code and Data All executable code should
be placed in read-only memory and the compiler
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$ env LD_DEBUG=statistics /bin/echo ’+++ some text +++’
...:
...: run-time linker statistics:
...: total startup time in dynamic loader: 748696 clock cycles
...: time needed for relocation: 378004 clock cycles (50.4%)
...: number of relocations: 133
...: number of relocations from cache: 5
...: time needed to load objects: 193372 clock cycles (25.8%)
+++ some text +++
...:
...: run-time linker statistics:
...: final number of relocations: 188
...: final number of relocations from cache: 5

Figure 8: Gather Startup Statistics

normally makes sure this is done correctly. When
creating data objects it is mostly up to the user
to make sure it is placed in the correct segment.
Ideally data is also read-only but this works only
for constants. The second best choice is a zero-
initialized variable which does not have to be ini-
tialized from file content. The rest has to go into
the data segment.

In the following we will not cover the first two points
given here. It is up to the developer of the DSO to de-
cide about this. There are no small additional changes to
make the DSO behave better, these are fundamental de-
sign decisions. We have voiced an opinion here, whether
it is has any effect remains to be seen.

1.7 Measuring ld.so Performance

To perform the optimizations it is useful to quantify the
effect of the optimizations. Fortunately it is very easy to
do this with glibc’s dynamic linker. Using the LD DEBUG

environment variable it can be instructed to dump in-
formation related to the startup performance. Figure 8
shows an example invocation, of the echo program in
this case.

The output of the dynamic linker is divided in two parts.
The part before the program’s output is printed right be-
fore the dynamic linker turns over control to the appli-
cation after having performed all the work we described
in this section. The second part, a summary, is printed
after the application terminated (normally). The actual
format might vary for different architectures. It includes
the timing information only on architectures which pro-
vide easy access to a CPU cycle counter register (modern
IA-32, IA-64, x86-64, Alpha in the moment). For other
architectures these lines are simply missing.

The timing information provides absolute values for the
total time spend during startup in the dynamic linker, the
time needed to perform relocations, and the time spend

in the kernel to load/map binaries. In this example the
relocation processing dominates the startup costs with
more than 50%. There is a lot of potential for optimiza-
tions here. The unit used to measure the time is CPU
cycles. This means that the values cannot even be com-
pared across different implementations of the same ar-
chitecture. E.g., the measurement for a PentiumRM III and
a PentiumRM 4 machine will be quite different. But the
measurements are perfectly suitable to measure improve-
ments on one machine which is what we are interested
here.

Since relocations play such a vital part of the startup per-
formance some information on the number of relocations
is printed. In the example a total of 133 relocations are
performed, from the dynamic linker, the C library, and the
executable itself. Of these 5 relocations could be served
from the relocation cache. This is an optimization imple-
mented in the dynamic linker to handle the case of mul-
tiple relocations against the same symbol more efficient.
After the program itself terminated the same information
is printed again. The total number of relocations here is
higher since the execution of the application code caused
a number, 55 to be exact, of run-time relocations to be
performed.

The number of relocations which are processed is stable
across successive runs of the program. The time mea-
surements not. Even in a single-user mode with no other
programs running there would be differences since the
cache and main memory has to be accessed. It is there-
fore necessary to average the run-time over multiple runs.

It is obviously also possible to count the relocations with-
out running the program. Running readelf -d on the
binary shows the dynamic section in which the DT RELSZ,
DT RELENT, DT RELCOUNT, and DT PLTRELSZ entries are
interesting. They allow computing the number of normal
and relative relocations as well as the number of PLT en-
tries. If one does not want to do this by hand the relinfo
script in appendix A can be used.
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2 Optimizations for DSOs

In this section we describe various optimizations based
on C or C++ variables or functions. The choice of vari-
able or function, unless explicitly said, is made deliber-
ately since many of the implementations apply to the one
or the other. But there are some architectures where func-
tions are handled like variables. This is mainly the case
for embedded RISC architectures like SH-3 and SH-4
which have limitations in the addressing modes they pro-
vide which make it impossible to implement the function
handling as for other architectures. In most cases it is
no problem to apply the optimizations for variables and
functions at the same time. This is what in fact should be
done all the time to achieve best performance across all
architectures.

The most important recommendation is to always use
-fpic or -fPIC when generating code which ends up in
DSOs. This applies to data as well as code. Code which
is not compiled this way almost certainly will contain text
relocations. For these there is no excuse. Text relocations
requires extra work to apply in the dynamic linker. And
argumentation saying that the code is not shared because
no other process uses the DSO is invalid. In this case it is
not useful to use a DSO in the first place; the code should
just be added to the application code.

Some people try to argue that the use of -fpic/-fPIC
on some architectures has too many disadvantages. This
is mainly brought forward in argumentations about IA-
32. Here the use of %ebx as the PIC register deprives
the compiler of one of the precious registers it could use
for optimization. But this is really not that much of a
problem. First, not having %ebx available was never a
big penalty. Second, in modern compilers (e.g., gcc after
release 3.1) the handling of the PIC register is much more
flexible. It is not always necessary to use %ebx which
can help eliminating unnecessary copy operations. And
third, by providing the compiler with more information as
explained later in this section a lot of the overhead in PIC
can be removed. This all combined will lead to overhead
which is in most situations not noticeable.

When gcc is used, the options -fpic/-fPIC also tell the
compiler that a number of optimizations which are pos-
sible for the executable cannot be performed. This has to
do with symbol lookups and cutting it short. Since the
compiler can assume the executable to be the first object
in the lookup scope it knows that all references of global
symbols known to be defined in the executable are re-
solved locally. Access to locally defined variable could
be done directly, without using indirect access through
the GOT. This is not true for DSOs: the DSOs can be
later in the lookup scope and earlier objects might be in-
terposed. It is therefore mandatory to compile all code
which can potentially end up in a DSO with -fpic/-fPIC
since otherwise the DSO might not work correctly. There
is no compiler option to separate this optimization from

the generation of position-independent code.

Which of the two options, -fpic or -fPIC, have to be
used must be decided on a case-by-case basis. For some
architectures there is no difference at all and people tend
to be careless about the use. For most RISC there is a big
difference. As an example, this is the code gcc generates
for SPARC to read a global variable global when using
-fpic:

sethi %hi(_GLOBAL_OFFSET_TABLE_-4),%l7
call .LLGETPC0
add %l7,%lo(_GLOBAL_OFFSET_TABLE_+4),%l7
ld [%l7+global],%g1
ld [%g1],%g1

And this is the code sequence if -fPIC is used:

sethi %hi(_GLOBAL_OFFSET_TABLE_-4),%l7
call .LLGETPC0
add %l7,%lo(_GLOBAL_OFFSET_TABLE_+4),%l7
sethi %hi(global),%g1
or %g1,%lo(global),%g1
ld [%l7+%g1],%g1
ld [%g1],%g1

In both cases %l7 is loaded with the address of the GOT
first. Then the GOT is accessed to get the address of
global. While in the -fpic case one instruction is suf-
ficient, three instructions are needed in the -fPIC case.
The -fpic option tells the compiler that the size of the
GOT does not exceed an architecture-specific value (8kB
in case of SPARC). If only that many GOT entries can
be present the offset from the base of the GOT can be
encoded in the instruction itself, i.e., in the ld instruc-
tion of the first code sequence above. If -fPIC is used
no such limit exists and so the compiler has to be pes-
simistic and generate code which can deal with offsets of
any size. The difference in the number of instructions in
this example correctly suggests that the -fpic should be
used at all times unless it is absolutely necessary to use
-fPIC. The linker will fail and write out a message when
this point is reached and one only has to recompile the
code.

When writing assembler code by hand it is easy to miss
cases where position independent code sequences must
be used. The non-PIC sequences look and actually are
simpler and more natural. Therefore it is extremely im-
portant to in these case to check whether the DSO is
marked to contain text relocations. This is easy enough
to do:

readelf -d binary | grep TEXTREL
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If this produces any output text relocations are present
and one better starts looking what causes them.

2.1 Data Definitions

Variables can be defined in C and C++ in several different
ways. Basically there are three kinds of definitions:

Common Common variables are more widely used FOR-
TRAN but they got used in C and C++ as well to
work around mistakes of programmers. Since in
the early days people used to drop the extern key-
word from variable definitions, in the same way it
is possible to drop it from function declaration, the
compiler often has multiple definitions of the same
variable in different files. To help the poor and
clueless programmer the C/C++ compiler normally
generates common variables for uninitialized defi-
nitions such as

int foo;

For common variables there can be more than one
definition and they all get unified into one location
in the output file. Common variables are always
initialized with zero. This means their value does
not have to be stored in an ELF file. Instead the
file size of a segment is chosen smaller than the
memory size as described in 1.4.

Uninitialized If the programmer uses the compiler com-
mand line option -fno-common the generated code
will contain uninitialized variables instead of com-
mon variables if a variable definition has no ini-
tializer. Alternatively, individual variables can be
marked like this:

int foo attribute ((nocommon));

The result at run-time is the same as for common
variable, no value is stored in the file. But the rep-
resentation in the object file is different and it al-
lows the linker to find multiple definitions and flag
them as errors. Another difference is that it is pos-
sible to define aliases, i.e., alternative names, for
uninitialized variables while this is not possible for
common variables.

With recent gcc versions there is another method to
create uninitialized variables. Variables initialized
with zero are stored this way. Earlier gcc versions
stored them as initialized variables which took up
space in the file. This is a bit cumbersome for vari-
ables with structured types. So, sticking with the
per-variable attribute is probably the best way.

Initialized The variable is defined and initialized to a
programmer-defined value. In C:

int foo = 42;

In this case the initialization value is stored in the
file. As described in the previous case initializa-

tions with zero are treated special by some compil-
ers.

Normally there is not much the user has to do to create
optimal ELF files. The compiler will take care of avoid-
ing the initializers. To achieve the best results even with
old compilers it is desirable to avoid explicit initializa-
tions with zero if possible. This creates normally com-
mon variables but if combined with gcc’s -fno-common
flag the same reports about multiple definitions one would
get for initialized variables can be seen.

There is one thing the programmer is responsible for. As
an example look at the following code:

bool is_empty = true;
char s[10];

const char *get_s (void) {
return is_empty ? NULL : s;

}

The function get s uses the boolean variable is empty

to decide what to do. If the variable has its initial value
the variable s is not used. The initialization value of
is empty is stored in the file since the initialize is non-
zero. But the semantics of is empty is chosen arbitrar-
ily. There is no requirement for that. The code could
instead be rewritten as:

bool not_empty = false;
char s[10];

const char *get_s (void) {
return not_empty ? s : NULL;

}

Now the semantics of the control variable is reversed. It
is initialized with false which is guaranteed to have the
numeric value zero. The test in the function get s has
to be changed as well but the resulting code is not less or
more efficient than the old code.

By simple transformations like that it is often possible
to avoid creating initialized variables and instead using
common or uninitialized variables. This saves disk space
and eventually improves startup times. The transforma-
tion is not limited to boolean values. It is sometimes pos-
sible to do it for variables which can take on more than
two values, especially enumeration values. When defin-
ing enums one should always put the value, which is most
often used as initializer, first in the enum definition. I.e.
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enum { val1, val2, val3 };

should be rewritten as

enum { val3, val1, val2 };

if val3 is the value most often used for initializations.
To summarize, it is always preferable to add variables
as uninitialized or initialized with zero as opposed to as
initialized with a value other than zero.

2.2 Export Control

When creating a DSO from a collection of object files the
dynamic symbol table will by default contain all the sym-
bols which are globally visible in the object files. In most
cases this set is far too large. Only the symbols which are
actually part of the ABI should be exported. Failing to
restrict the set of exported symbols are numerous draw-
backs:

• Users of the DSO could use interfaces which they
are not supposed to. This is problematic in revi-
sions of the DSO which are meant to be binary
compatible. The correct assumption of the DSO
developer is that interfaces, which are not part of
the ABI, can be changed arbitrarily. But there are
always users who claim to know better or do not
care about rules.

• According to the ELF lookup rules all symbols in
the dynamic symbol table can be interposed (un-
less the visibility of the symbol is restricted). I.e.,
definitions from other objects can be used. This
means that local references cannot be bound at link
time. If it is known or intended that the local defi-
nition should always be used the symbol in the ref-
erence must not be exported or the visibility must
be restricted.

• The dynamic symbol table and its string table are
available at run-time and therefore must be loaded.
This can require a significant amount of memory,
even though it is read-only. One might think that
the size is not much of an issue but if one exam-
ines the length of the mangled names of C++ vari-
ables or functions, it becomes obvious that this is
not the case. In addition we have the run-time costs
of larger symbol tables which we discussed in the
previous section.

We will now present a number of possible solutions for
the problem of exported interfaces. Some of them solve
the same problem in slightly different ways. We will say
which method should be preferred. The programmer has
to make sure that whatever is used is available on the tar-
get system.

In the discussions of the various methods we will use one
example:

int last;

int next (void) {
return ++last;

}

int index (int scale) {
return next () << scale;

}

Compiled on a IA-32 Linux machine a DSO with only
this code (plus startup code etc) contains seven reloca-
tions, two of which are relative, and four PLT entries (use
the relinfo script). We will see how we can improve on
this. Four of the normal and both relative relocations as
well as three PLT entries are introduced by the additional
code used by the linker to create the DSO. The actual ex-
ample code creates only one normal relocation for last
and one PLT entry for next. To increment and read the
variable last in next the compiler generates code like

movl last@GOT(%ebx), %edx
movl (%edx), %eax
incl %eax
movl %eax, (%edx)

and the call of next is compiled to

call next@PLT

These code fragments were explained in section 1.5.5.

2.2.1 Use static

The easiest way to not export a variable or function is to
define it with file-local scope. In C and C++ this is done
by defining it with static, in C++ additionally using
anonymous namespaces. This is for many people obvi-
ous but unfortunately not for all. Many consider adding
static as optional. This is true when considering only
the C semantics of the code.

If in our example neither last or next are needed out-
side the file we can change the source to:
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static int last;

static int next (void) {
return ++last;

}

int index (int scale) {
return next () << scale;

}

Compiled in the same way as before we see that all the re-
locations introduced by our example code vanished. I.e.,
we are left with six relocations and three PLT entries. The
code to access last now looks like this:

movl last@GOTOFF(%ebx), %eax
incl %eax
movl %eax, last@GOTOFF(%ebx)

The code improved by avoiding the step which loads the
address of the variable from the GOT. Instead, both mem-
ory accesses directly address the variable in memory. At
link-time the variable location has a fixed offset from the
PIC register, indicated symbolically by last@GOTOFF.
By adding the value to the PIC register value we get the
address of last. Since the value is known at link-time
this construct does not need a relocation at run-time.

The situation is similar for the call to next. The IA-32
architecture, like many others, knows a PC-relative ad-
dressing mode for jumps and calls. Therefore the com-
piler can generate a simple jump instruction

call next

and the assembler generates a PC-relative call. The dif-
ference between the address of the instruction following
the call and the address of next is constant at link-time
and therefore also does not need any relocation. Another
advantage is that, in the case of IA-32, the PIC register
does not have to be set up before the jump. If the com-
piler wouldn’t know the jump target is in the same DSO
the PIC register would have to be set up. Other architec-
tures have similar requirements.

The generated code is optimal. The compiler might even
consider inlining some code if it finds that this is bene-
ficial. It is always advised that the programmer places
the various variable and function definitions in the same

file as the references and then define the referenced ob-
jects as static. When generating the production bina-
ries it might even be desirable to merge as many input
files as possible together to mark as many objects as pos-
sible static. Unless one is comfortable with one giant
file there is a limit on how many functions can be grouped
together. It is not necessary to continue the process ad in-
finitum since there are other ways to achieve the same
result (minus inlining).

2.2.2 Define Global Visibility

The next best thing to using static is to explicitly de-
fine the visibility of objects in the DSO. The generic ELF
ABI defines visibility of symbols. The specification de-
fines four classes of which here only two are of interest.
STV DEFAULT denotes the normal visibility. The symbol
is exported and can be interposed. The other interesting
class is denoted by STV HIDDEN. Symbols marked like
this are not exported from the DSO and therefore can-
not be used from other objects. There are a number of
different methods to define visibility.

Starting with version 4.0, gcc knows about a the com-
mand line option -fvisibility. It takes a parameter
and the valid forms are these:

-fvisibility=default
-fvisibility=hidden
-fvisibility=internal
-fvisibility=protected

Only the first two should ever be used. The default is
unsurprisingly default since this is the behavior of the
compiler before the introduction of this option. When
-fvisibility=hidden is specified gcc changes the de-
fault visibility of all defined symbols which have no ex-
plicit assignment of visibility: all symbols are defined
with STV HIDDEN unless specified otherwise. This op-
tion has to be used with caution since unless the DSO
is prepared by having all APIs marked as having default
visibility, the generated DSO will not have a single ex-
ported symbol. This is usually not what is wanted.

In general it is the preference of the author which decides
whether -fvisibility=hidden should be used. If it
is not used, symbols which are not to be exported need
to be marked in one way or another. The next section
will go into details. In case the option is used all ex-
ported functions need to be declared as having visibility
default which usually means the header files are sig-
nificantly uglified. On the other hand it means that no
symbol can accidentally be exported because an appro-
priate declaration etc is missing. In some situations this
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can prevent bad surprises.8

2.2.3 Define Per-Symbol Visibility

Instead of changing the default visibility the programmer
can choose to define to hide individual symbols. Or, if
the default visibility is hidden, make specific symbols ex-
portable by setting the visibility to default.

Since the C language does not provide mechanisms to
define the visibility of a function or variable gcc resorts
once more to using attributes:

int last
__attribute__ ((visibility ("hidden")));

int
__attribute__ ((visibility ("hidden")))
next (void) {
return ++last;

}

int index (int scale) {
return next () << scale;

}

This defines the variable last and the function next

as hidden. All the object files which make up the DSO
which contains this definition can use these symbols. I.e.,
while static restricts the visibility of a symbol to the
file it is defined in, the hidden attribute limits the visibil-
ity to the DSO the definition ends up in. In the example
above the definitions are marked. This does not cause any
harm but it is in any case necessary to mark the declara-
tion. In fact it is more important that the declarations are
marked appropriately since it is mainly the code gener-
ated for in a reference that is influenced by the attribute.

Instead of adding an visibility attribute to each declara-
tion or definition, it is possible to change the default tem-
porarily for all definitions and declarations the compiler
sees at this time. This is mainly useful in header files
since it reduces changes to a minimum but can also be
useful for definitions. This compiler feature was also in-
troduced in gcc 4.0 and is implemented using a pragma:9

#pragma GCC visibility push(hidden)
int last;

int

8Accidentally exporting symbol can mean that programs can use
and get dependent on them. Then it is hard to remove the symbol again
for binary compatibility reasons.

9Note: ISO C99 introduced Pragmawhich allows using pragmas
in macros.

next (void) {
return ++last;

}
#pragma GCC visibility pop

int index (int scale) {
return next () << scale;

}

As in the example using the attributes, last and next

are both defined with hidden visibility while index is
defined with default visibility (assuming this is the de-
fault currently in use). As the pragma syntax suggests, it
is possible to nest the pragmas with the expected result.

In case the -fvisibility=hidden command line op-
tion is used, individual symbols can be marked as ex-
portable by using the same syntax as presented in this
section, except with default in place of hidden. In
fact, the names of all four visibilities are allowed in the
attribute or pragma.

Beside telling the backend of the compiler to emit code to
flag the symbol as hidden, changing the visibility has an-
other purpose: it allows the compiler to assume the defi-
nition is local. This means the addressing of variables and
function can happen as if the definitions would be locally
defined in the file as static. Therefore the same code
sequences we have seen in the previous section can be
generated. Using the hidden visibility attribute is there-
fore almost completely equivalent to using static; the
only difference is that the compiler cannot automatically
inline the function since it need not see the definition.

We can now refine the rule for using static: merge
source files and mark as many functions static as far as
one feels comfortable. In any case merge the files which
contain functions which potentially can be inlined. In all
other cases mark functions (the declarations) which are
not to be exported from the DSO as hidden.

Note that the linker will not add hidden symbols to the
dynamic symbol table. I.e., even though the symbol ta-
bles of the object files contain hidden symbols they will
disappear automatically. By maximizing the number of
hidden declarations we therefore reduce the size of the
symbol table to the minimum.

The generic ELF ABI defines another visibility mode:
protected. In this scheme references to symbols defined
in the same object are always satisfied locally. But the
symbols are still available outside the DSO. This sounds
like an ideal mechanism to optimize DSO by avoiding the
use of exported symbols (see section 2.2.7) but it isn’t.
Processing references to protected symbols is even more
expensive than normal lookup. The problem is a require-
ment in the ISO C standard. The standard requires that
function pointers, pointing to the same function, can be
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compared for equality. This rule would be violated with a
fast and simple-minded implementation of the protected
visibility. Assume an application which references a pro-
tected function in a DSO. Also in the DSO is another
function which references said function. The pointer in
the application points to the PLT entry for the function
in the application’s PLT. If a protected symbol lookup
would simply return the address of the function inside
the DSO the addresses would differ.

In programming environments without this requirement
on function pointers the use of the protected visibility
would be useful and fast. But since there usually is only
one implementation of the dynamic linker on the sys-
tem and this implementation has to handle C programs
as well, the use of protected is highly discouraged.

There are some exceptions to these rules. It is possible
to create ELF binaries with non-standard lookup scopes.
The simplest example is the use of DF SYMBOLIC (or of
DT SYMBOLIC in old-style ELF binaries, see page 25).
In these cases the programmer decided to create a non-
standard binary and therefore accepts the fact that the
rules of the ISO C standard do not apply.

2.2.4 Define Visibility for C++ Classes

For C++ code we can use the attributes as well but they
have to be used very carefully. Normal function or vari-
able definitions can be handled as in C. The extra name
mangling performed has no influence on the visibility.
The story is different when it comes to classes. The sym-
bols and code created for class definitions are member
functions and static data or function members. These
variables and functions can easily be declared as hidden
but one has to be careful. First an example of the syntax.

class foo {
static int u __attribute__

((visibility ("hidden")));
int a;
public:
foo (int b = 1);
void offset (int n);
int val () const __attribute__

((visibility ("hidden")));
};

int foo::u __attribute__
((visibility ("hidden")));

foo::foo (int b) : a (b) { }
void foo::offset (int n) { u = n; }
int
__attribute__ ((visibility ("hidden")))
foo::val () const { return a + u; }

In this example code the static data member u and the

member function val are defined as hidden. The sym-
bols cannot be accessed outside the DSO the definitions
appear in. Please note that this is an additional restriction
on top of the C++ access rules. For the member functions
one way around the problem is to instantiate the class in
more than one DSO. This is usually causing no problems
and “only” adds to code bloat.

Things are getting more interesting when static data mem-
bers or static local variables in member functions are used.
In this case there must be exactly one definition used
(please note: “used”, not “present”). To obey this rule
it is either necessary to not restrict the export of the static
data member of member function from the DSO or to
make sure all accesses of the data or function are made
in the DSO with the definitions. If multiple definitions
are present it is very easy to make mistakes when hiding
static data members or the member functions with static
variables since the generated code has no way of knowing
that there are multiple definitions of the variables. This
leads to very hard to debug bugs.

In the example code above the static data member u is de-
clared hidden. All users of the member must be defined
in the same DSO. C++ access rules restrict access only to
member functions, regardless of where they are defined.
To make sure all users are defined in the DSO with the
definition of u it is usually necessary to avoid inline func-
tions which access the hidden data since the inline gener-
ated code can be placed in any DSO which contains code
using the class definition. The member function offset

is a prime example of a function which should be inlined
but since it accesses u it cannot be done. Instead offset
is exported as an interface from the DSO which contains
the definition of u.

If a member function is marked as hidden, as val is in
the example, it cannot be called from outside the DSO.
Note that in the example the compiler allows global ac-
cess to the member function since it is defined as a public
member. The linker, not the compiler, will complain if
this member function is used outside the DSO with the
instantiation. Inexperienced or not fully informed users
might interpret this problem as a lack of instantiation
which then leads to problems due to multiple definitions.

Because these problems are so hard to debug it is essen-
tial to get the compiler involved in making sure the user
follows the necessary rules. The C++ type system is rich
enough to help if the implementor puts some additional
effort in it. The key is to mimic the actual symbol access
as closely as possible with the class definition. For this
reason the class definitions of the example above should
actually look like this:

class foo {
static int u __attribute__

((visibility ("hidden")));
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int a;
public:
foo (int b = 1);
int val () const __attribute__

((visibility ("hidden")));
void offset (int n);

};

class foo_ext : protected foo {
public:
foo_ext (int b = 1) : foo (b) { }
void offset (int n)

{ return foo::offset (n); }
};

The class foo is regarded as a private class, not to be
used outside the DSO with the instantiation. The public
interface would be the class foo ext. It provides access
to the two public interfaces of the underlying class. As
long as the users of the DSO containing the definitions
respect the requirement that only foo ext can be used
there is no way for the compiler not noticing accesses to
foo::u and foo::val outside the DSO containing the
definitions.

Template class and functions are not different. The syn-
tax is the same. Non-inline function definitions get yet
again less readable but that is something which can be
mostly hidden with a few macros.

template<class T>
class a {
T u;
public:
a (T a = 0);
T r () const __attribute__

((visibility ("hidden")));
};

template<class T> a<T>::a (T a)
{ u = a; }
template<class T> T
__attribute__ ((visibility ("hidden")))
a<T>::r () const { return u; }

For templatized classes the problems of making sure that
if necessary only one definition is used is even harder to
fix due to the various approaches to instantiation.

One sort of function which can safely be kept local and
not exported are inline function, either defined in the class
definition or separately. Each compilation unit must have
its own set of all the used inline functions. And all the
functions from all the DSOs and the executable better be
the same and are therefore interchangeable. It is possible
to mark all inline functions explicitly as hidden but this is

a lot of work. Since version 4.0 gcc knows about the op-
tion -fvisibility-inlines-hidden which does just
what is wanted. If this option is used a referenced in-
line function is assumed to be hidden and an out-of-line
copy of the function is marked with STV HIDDEN. I.e., if
the function is not inlined the separate function created is
not exported. This is a quite frequent situation at times
since not all functions the programmer thinks should be
inlined are eligible according to the compiler’s analysis.
This option is usable in almost all situations. Only if the
functions in the different DSOs can be different or if the
code depends on exactly one copy of the function ever
being used (e.g., if the function address is expected to be
the same) should this option be avoided.

If a C++ class is used only for the implementation and
not used in any interface of a DSO using the code, then
it would be possible to mark each member function and
static data element as hidden. This is cumbersome, error-
prone, and incomplete, though. There is perhaps a large
number of members which need to be marked and when a
new member is added it is easy to forget about adding the
necessary attributes. The incompleteness stems from the
fact that the C++ compiler automatically generates a few
members functions such are constructors and destructors.
These member functions would not be affected by the
attributes.

The solution to these problems is to explicitly determine
the visibility of the entire class. Since version 4.0 does
gcc have support for this. There are two ways to achieve
the goal. First, the already mentioned pragma can be
used.

#pragma GCC visibility push(hidden)
class foo {
...

};
#pragma GCC visibility pop

All member functions and static data members of foo
are automatically defined as hidden. This extends even to
implicitly generated functions and operators if necessary.

The second possibility is to use yet another extension in
gcc 4.0. It is possible to mark a function as hidden when
it is defined. The syntax is this:

class __attribute ((visibility ("hidden")))
foo {
...

};

Just as with the pragma, all defined functions are defined
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as hidden symbols. Explicitly using attributes should be
preferred since the effect of the pragmas is not always
obvious. If the push and pop lines are far enough from
each other a programmer might accidentally add a new
declaration in the range even though the visibility of this
new declaration is not meant to be affected. Both, the
pragma and the class attribute, should only be used in
internal headers. In the headers which are used to ex-
pose the API of the DSO it makes no sense to have them
since the whole point is to hide the implementation de-
tails. This means it is always a good idea to differentiate
between internal and external header files.

Defining entire classes with hidden visibility has some
problems which cannot be modeled with sophisticated
class layout or moving the definition in private headers.
For exception handling the compiler generates data struc-
tures (typeinfo symbols) which are also marked ac-
cording to the visibility attribute used. If an object of
this type is thrown the catch operation has to look for
the typeinfo information. If that information is in a
different DSO the search will be unsuccessful and the
program will terminate. All classes which are used in
exception handling and where the throw and catch are
not both guaranteed to reside in the DSO with the defi-
nition must be declared with default visibility. Individual
members can still be marked with an visibility attribute
but since the typeinfo data is synthesized by the com-
piler on command there is no way for the programmer to
overwrite a hidden visibility attribute associated with the
class.

The use of the most restrictive visibility possible can be
of big benefit for C++ code. Each inline function which
is (also) available as a stand-alone function, every syn-
thesized function are variable has a symbol associated
which is by default exported. For templatized classes this
is even worse, since each instantiated class can bring is
many more symbols. It is best to design the code right
away so that the visibility attributes can be applied when-
ever possible. Compatibility with older compilers can
easily be achieved by using macros.

2.2.5 Use Export Maps

If for one reason or another none of the previous two so-
lutions are applicable the next best possibility is to in-
struct the linker to do something. Only the GNU and
Solaris linker are known to support this, at least with the
syntax presented here. Using export maps is not only
useful for the purpose discussed here. When discussing
maintenance of APIs and ABIs in chapter 3 the same kind
of input file is used. This does not mean the previous two
methods should not be preferred. Instead, export (and
symbol) maps can and should always be used in addition
to the other methods described.

The concept of export maps is to tell the linker explicitly
which symbols to export from the generated object. Ev-

ery symbol can belong to one of two classes: exported or
not exported. Symbols can be listed individually, glob-
expressions can be used, or the special * catch-all glob
expression can be used. The latter only once. The sym-
bol map file for our example code could look like this:

{
global: index;
local: *;

};

This tells the linker that the symbol index is to be ex-
ported and all others (matched by *) are local. We could
have listed last and next explicitly in the local: list
but it is generally advised to always use the catch-all case
to mark all not explicitly mentioned symbols as local.
This avoids surprises by allowing access only to the sym-
bols explicitly mentions. Otherwise there would also be
the problem with symbols which are matched neither by
the global: nor by the local:, resulting in unspecified
behavior. Another unspecified behavior is if a name ap-
pears in both lists or is matched using globbing in both
lists.

To generate a DSO with this method the user has to pass
the name of the map file with the --version-script

option of the linker. The name of the option suggests that
the scripts can be used for more. We will get back to this
when we discuss ABIs in the next chapter.

$ gcc -shared -o foo.so foo.c -fPIC \
-Wl,--version-script=foo.map

The file foo.map is supposed to contain text like the one
shown above.

It is of course also possible to use export maps with C++
code. One has two options in this case: explicitly name
the symbols using their mangled names, or rely on pat-
tern matching for the mangled names. Using the man-
gled names is straight-forwarded. Just use the identifiers
as in the C examples. Using the demangled names re-
quire support in the linker. Assume a file defining the
following functions:

int foo (int a) { ... }
int bar (int a) { ... }
struct baz {
baz (int);
int r () const;
int s (int);

};
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A DSO containing definitions for all these functions and
members should only export the function foo and the de-
structor(s) of baz and baz::s. An export map to achieve
this could look like this:

{
global:
extern "C++" {

foo*;
baz::baz*;
baz::s*

};
local: *;

};

The use of extern "C++" tells the linker to match the
following patterns with demangled C++ names. The first
entry foo* matches the first global function in the ex-
ample. The second entry matches the constructor(s) of
baz and the third entry matches the function baz::s.
Note that patterns are used in all cases. This is necessary
since foo, baz::baz, and baz::s are not the complete
names. The function parameter are also encoded in the
mangled name and must be matched. It is not possible to
match complete demangled C++ names since the current
linker implementation refuses to allow non-alphanumeric
characters. Using pattern might have unwanted effects.
If there is another member function in baz starting with
the letter ‘s’ it will also be exported. And one last odd-
ity should be mentioned: currently the linker requires that
there is no semicolon after the last entry in the C++ block.

Using export maps seems like a very desirable solution.
The sources do not have to be made less readable us-
ing attribute declarations or eventually pragmas. All the
knowledge of the ABI is kept locally in the export map
file. But this process has one fundamental problem: ex-
actly because the sources are not modified the final code
is not optimal. The linker is used only after the compiler
already did its work and the once generated code cannot
be optimized significantly.

In our running example the compiler must generate the
code for the next function under the worst case sce-
nario assumption that the variable last is exported. This
means the code sequence using @GOTOFFwhich was men-
tioned before cannot be generated. Instead the normal
two instruction sequence using @GOT must be generated.

This is what the linker will see when it gets instructed to
hide the symbol last. The linker will not touch the ac-
tual code. Code relaxation here would require substantial
analysis of the following code which is in theory possi-
ble but not implemented. But the linker will not generate
the normal R 386 GLOB DAT relocation either. Since the
symbol is not exported no interposition is allowed. The
position of the local definition relative to the start of the

DSO is known and so the linker will generate a relative
relocation.

For function calls the result is often as good as it gets.
The code generated by the compiler for a PC-relative
jump and a jump through the PLT is identical. It is just
the code which is called (the target function versus the
code in the PLT) which makes the difference. The code
is only not optimal in one case: if the function call is the
only reason the PIC register is loaded. For a call to a local
function this is not necessary and loading the PIC is just
a waste of time and code.

To summarize, for variables the use of symbol maps cre-
ates larger and less efficient code, adds an entry in the
GOT, and adds a relative relocation. For functions the
generated code sometimes contains unnecessary loads of
the PIC. One normal relocation is converted into a rel-
ative relocation and one PLT entry is removed. This is
one relative relocation worse than the previous methods.
These deficiencies are the reason why it is much prefer-
able to tell the compiler what is going on since after the
compiler finished its work certain decisions cannot be re-
verted anymore.

2.2.6 Libtool’s -export-symbols

The fourth method to restrict symbol export is the least
desirable of them. It is the one used by the GNU Libtool
program when the -export-symbols option is used.
This option is used to pass to Libtool the name of a file
which contains the names of all the symbols which should
be exported, one per line. The Libtool command line
might look like this:

$ libtool --mode=link gcc -o libfoo.la \
foo.lo -export-symbols=foo.sym

The file foo.sym would contain the list of exported sym-
bols. foo.lo is the special kind of object files Libtool
generates. For more information on this and other strange
details from the command line consult the Libtool man-
ual.

Interesting for us here is the code the linker produces us-
ing this method. For the GNU linker Libtool converts the
-export-symbols option into the completely useless
-retain-symbols-file option. This option instructs
the linker to prune the normal symbol tables, not the dy-
namic symbol table. The normal symbol table will con-
tain only the symbols named in the export list file plus the
special STT SECTION symbols which might be needed in
relocations. All local symbols are gone. The problem is
that the dynamic symbol table is not touched at all and
this is the table which is actually used at runtime.
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The effect of the using libtool this way is that pro-
grams reading the normal symbol table (for instance nm)
do not find any symbols but those listed in the export
list. And that is it. There are no runtime effects. Neither
have any symbols been made unavailable for the dynamic
linker, nor have any normal relocations been converted
into relative relocations.

The only reason this method is mentioned here is that
there is hope libtool will learn about converting the
export lists into the anonymous version maps we have
seen in the previous section when the GNU linker is used.
At that point libtool will become useful. Until then
relying on its -export-symbols option is misleading
at best.

2.2.7 Avoid Using Exported Symbols

In some situations it might not be desirable to avoid ex-
porting a symbol but at the same time all local references
should use the local definition. This also means that the
uses of the symbols is cheaper since the less general code
sequences can be used. This is a subset of the problem
discussed so far. A solution needs a different approach
since so far we achieved the better code by not exporting
only.

Since a symbol cannot be exported and not-exported at
the same time the basic approach is to use two names for
the same variable or function. The two names then can
be treated differently. There are multiple possibilities to
create two names, varying in efficiency and effort.

At this point it is necessary to add a warning. By per-
forming this optimization the semantics of the program
changes since the optimization interferes with the sym-
bol lookup rules. It is now possible to use more than one
symbol with a given name in the program. Code out-
side the DSO might find a definition of a symbol some-
where else while the code in the DSO always uses the
local definition. This might lead to funny results. Of-
ten it is acceptable since multiple definitions are not al-
lowed. A related issue is that one rule of ISO C can be
violated by this. ISO C says that functions are identified
by their names (identifiers) and that comparing the func-
tion pointers one can test for equality. The ELF imple-
mentation works hard to make sure this rule is normally
obeyed. When forcing the use of local symbols code in-
side and outside the DSO might find different definitions
for a given name and therefore the pointers do not match.
It is important to always consider these side effects before
performing the optimization.

Wrapper Functions Only applicable to functions, us-
ing wrappers (i.e. alternative entry points) is the most
portable but also most costly way to solve the problem.
If in our example code we would want to export index

as well as next we could use code like this:

static int last;

static int next_int (void) {
return ++last;

}

int next (void) {
return next_int ();

}

int index (int scale) {
return next_int () << scale;

}

The function next is now a simple wrapper around next int.
All calls to next int are recognized by the compiler as
calls to a local function since next int, unlike next, is
defined with static. Therefore no PLT entries is used
for the call in index.

The drawback of this method is that additional code is re-
quired (the code for the new next function) and that call-
ing next also minimally slower than necessary at run-
time. As a fallback solution, in case no other method
works, this is better than nothing.

Using Aliases Introducing two names without adding
code can be achieved by creating aliases for existing ob-
jects. Support for this is included in gcc; this does not
only include the creation of the alias, gcc also knows the
type for the alias and can perform appropriate tests when
the alias is used. The here goal is therefore to create an
alias and tell gcc and/or the linker to not export the sym-
bol. I.e., we apply the same techniques described in the
previous sections now to an alias. The only difference is
that defining an alias as static will not work. The best
method therefore is to use visibility attributes. The other
previously discussed methods will also work but we do
not go into the details for them here.

If in our example we want to export both last and next
we can rewrite the example like this:

int last;
extern __typeof (last) last_int
__attribute ((alias ("last"),

visibility ("hidden")));

int next (void) {
return ++last_int;

}
extern __typeof (next) next_int
__attribute ((alias ("next"),
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visibility ("hidden")));

int index (int scale) {
return next_int () << scale;

}

This is quite a collection of non-standard gcc extensions
to the C language so it might need some explanation. The
actual definitions of all three objects are the same as in the
original code. All these objects are exported. The differ-
ence in the definitions is that next is using the internal
alias last int instead of last and similarly for index
and next. What looks like two declarations is the mech-
anism by which gcc is told about the aliases. It is basi-
cally an extern declaration of an object with the same
type (we use here typeof to ensure that) which has an
alias added. The alias attribute names the object this
is an alias of.

To achieve the results we want, namely that the aliases are
not exported and that gcc gets told about this, we have
to add the hidden visibility attribute. Looking back at
sections 2.2.2 and 2.2.3 it should be easy to see that the
use of this attribute is equivalent.

If the visibility attributes cannot be used for some reason
almost the same code should be used, only leaving out

, visibility ("hidden")

This will create a normal alias with the same scope as the
original symbol. Using export maps the alias can then
be hidden. The resulting binary will not use the efficient
code sequences (see section 2.2.5) but the local definition
will always be used.

An attentive reader might suggest that it is possible to
avoid some of the complications by writing the code for
next like this:

static int next_int (void) {
return ++last_int;

}
extern __typeof (next_int) next

__attribute ((alias ("next_int")));

As a static definition, next int is not exported and el-
igible for inlining, while next is defined as extern and
therefore exported. Even though this sometimes works
there is no guarantee it does all the time. The compiler
is allowed to use arbitrary symbol names for static

functions and variables since the names are not part of
the ABI of the object file. This is necessary in some
situations to avoid name clashes. The result is that the
alias("next int") part might fail to provide the cor-

rect symbol name and therefore the alias definition will
fail. For this reason it is mandatory to create alias only of
non-static functions and variables.

For C++ programs defining aliases we also are also chal-
lenged by names. The problem is that the alias attribute
requires the assembler name of the defined symbol as a
string parameter. For C++ code this means the mangled
name. For simple C++ function we manage to get along
with the same trick used in the C example.

int
add (int a, int b)
{
return a + b;

}
extern __typeof (add) add_int
__attribute ((alias ("_Z3addii"),

visibility ("hidden")));

There are only two tricky parts. The first is finding the
correct mangled name. For the locally used compiler it is
quite easy to determine the name, just compile the code
without the alias definition and look at the symbol table
of the generated file. Name mangling is unfortunately
traditionally not well standardized. There exist several
different name mangling schemes which means the alias
string would have to be adjusted to the compiler which is
used for the compilation.

The second problem is the use of typeof if the func-
tion name is overloaded. In this case the compiler does
not know which of the potentially many versions of the
function is meant and it bails out.

DF SYMBOLIC The original designers of the ELF for-
mat considered the possibility that preferring local def-
initions might be useful. They have included a mecha-
nism which can enforce this. If the DF SYMBOLIC flag
is set in the DT FLAGS entry of the dynamic section (or
in older ELF binaries: if the dynamic section contains
an DT SYMBOLIC entry) the dynamic linker has to prefer
local definitions.

This approach has numerous disadvantages. First, all in-
terfaces are affected. The other approaches discussed
here have a per-interface granularity. Treating all inter-
faces like this is normally not the right way. The second
disadvantage is that the compiler does not get told about
the use of local symbols and therefore cannot optimize
the uses, just as if export maps would be used. And what
is even worse, calls to local functions still use the PLT en-
tries. The PLT and GOT entries are still created and the
jump is indirect. This might be useful in some situations
(e.g., when using LD PROFILE) but usually means a big,
missed opportunity for optimization.
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Finally the third problem is that the lookup scope is changed
in a way which can lead to using unexpected dependen-
cies. DF SYMBOLIC effectively puts the own object in
the first spot of its own lookup scope so that there are
a number of other DSO which are seen before the depen-
dencies. This is nothing new but the fact that the DSO
marked with DF SYMBOLIC is in an unusual place can
cause unexpected versions from being picked up.

The advice here is to never use DF SYMBOLIC. It does
not improve the code, forces all symbols to be treated the
same, and can cause problems in symbol lookup. It is
mentioned here only for completeness and as a warning.

2.3 Shortening Symbol Names

The description of the ELF symbol lookup algorithm shows
that one of the cost factors for the lookup is length of
the symbols involved. For successful lookups the entire
string has to be matched and unsuccessful lookups re-
quire matching the common prefix of the involved strings.

The flat namespace of the C programming environment
makes following the guideline to use short names easy.
The names the programmer uses are directly mapped to
names in the ELF file. The same is true for some other
programming environments such as traditional Pascal and
FORTRAN.

Programming environments with more sophisticated sym-
bol handling use name mangling. The most prominent
programming language in this class is C++. The sym-
bol string of a function consists beside the function name
also of a description of the parameter list, the classes the
function is a member of and the namespaces the class
or function is defined in. This can lead to enormously
long symbol names. Names of more than 1,000 charac-
ters have been sighted in the wild. Ada names tend to get
very long because of the package namespace.

The object and namespace model in C++ is used to man-
age the complexity of large projects and to facilitate code
reuse. Therefore it is desirable keep symbol names un-
modified during the development process. But once a
program is to be deployed the long names become a nui-
sance. This is when a person can step in and shorten the
names.

In C++ the most critical classes are those with templates
and/or deeply nested namespaces and class definitions. If
such classes are part of the interface of a DSO the pro-
grammer should make a change. A shorter name for a
class can be introduced by deriving publically a new class
from the class with the long name. The definition could
be in the global scope to avoid the namespace part of the
mangled name. The symbols associated with this new
class can be exported, the original class’ names are not.
This does not remove the names of the original class from
the non-dynamic symbol table but this table does not play

any role at run-time.

The wrapper class will have to redefine all non-virtual
member functions of the class it is helping to export. This
requires some work and it might add run-time costs by
an additional function call, the one to the wrapper func-
tion. Note that defining those functions inline will not
help since then the reference to the original, long name
is reintroduced. The only way to avoid the extra call is
to define appropriate aliases, which might prove cumber-
some.

Shortening symbol names can be considered a micro-
optimization and certainly should not be performed pre-
maturely. When keeping this optimization in mind dur-
ing the development it might be easy to implement and
the possible benefits can be big. Memory operations are
slow and if the number of bytes which have to be loaded
can be reduced this definitely has measurable results.

2.4 Choosing the Right Type

The selection of the right type can have significant im-
pact on the performs, startup time, and size of a program.
Most of the time it seems obvious what the right type
is but alternatives are sometimes available and in other
cases it might be preferable to rearrange code slightly.
This section will provide a few concrete examples which
by no means are meant to be a complete representation of
all the cases which can be optimized.

2.4.1 Pointers vs. Arrays

In some situations there is little or no difference between
pointers and arrays in C. The prototypes

void scale (int arr[10], int factor)

and

void scale (int *arr, int factor)

are in fact mostly equivalent. So people got the impres-
sion that there is never a difference and one often finds
code like this:

char *str = "some string";
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This is correct and meaningful in some situations. A vari-
able str is created with an initial value being a pointer
to a string. This specific piece of code compiles fine with
some compilers but will generate a warning when com-
piled with gcc. More on that in the next section.

The point to be made here is that the use of a variable
in this situation is often unnecessary. There might not be
an assignment to str (note: not the string, the pointer
variable). The value could be used only in I/O, string
generation, string comparison or whatever.

If this is the case the code above is not optimal and wastes
resources. All that would be needed is the string itself. A
better definition would therefore be:

char str[] = "some string";

This is something completely different than the code be-
fore. Here str is a name for a sequence of bytes which
contains initially the sequence "some string". By rewrit-
ing code in this way whenever it is possible we save one
pointer variable in the non-sharable data segment, and
one relative relocation to initialize the variable with a
pointer to the string. Eventually the compiler is able to
generate better code since it is known that the value of
str can never change (the bytes pointed to by str can
change).

2.4.2 Forever const

One nit still exists with the result in the last section: the
string is modifiable. Very often the string will never be
modified. In such a case the unsharable data segment is
unnecessarily big.

const char str[] = "some string";

After adding the const keyword the compiler is able
to move the string in sharable read-only memory. This
not only improves the program’s resource use and startup
speed, it also allows to catch mistakes like writing into
this string.

But that is not all. Modern gcc and linker versions can
work together to perform cross-object optimizations. I.e.,
strings which appear in more than one object file appear
only once in the final output. And even more: some link-
ers perform suffix optimizations, something which is pos-
sible with the string representation used in C. For this it
is necessary to realize that a string, which is the back-
part of a longer string (including the NUL byte), can be
represented by the bytes from the longer string.

const char s1[] = "some string";
const char s2[] = "string";

In this case only the string "some string" has to be
stored in the read-only data segment. The symbol s2 can
be a reference to the fifth character of the longer string.

To make this possible the compiler has to emit the string
data in specially marked section. The sections are marked
with the flags SHF MERGE and SHF STRINGS.

Not all strings can be handled, though. If a string con-
tains an explicit NUL byte, as opposed to the implicit
one at the end of the string, the string cannot be placed
in mergeable section. Since the linker’s algorithms use
the NUL byte to find the end of the string the rest of the
input string would be discarded. It is therefore desirable
to avoid strings with explicit NUL bytes.

2.4.3 Arrays of Data Pointers

Some data structure designs which work perfectly well
in application code add significant costs when used in
DSOs. This is especially true for arrays of pointers. One
example which shows the dilemma can be met frequently
in well-designed library interface. A set of interfaces re-
turns error number which can be converted using another
function into strings. The code might look like this:

static const char *msgs[] = {
[ERR1] = "message for err1",
[ERR2] = "message for err2",
[ERR3] = "message for err3"

};

const char *errstr (int nr) {
return msgs[nr];

}

The problematic piece is the definition of msgs. msgs is
as defined here a variable placed in non-sharable, writable
memory. It is initialized to point to three strings in read-
only memory (that part is fine). Even if the definition
would be written as

static const char *const msgs[] = {

(note the addition const) this would not change this (but
it opens up some other opportunities, see 2.6). The com-
piler still would have the place the variable in writable
memory. The reason are three relative relocation which
modify the content of the array after loading. The total
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cost for this code is three words of data in writable mem-
ory and three relocations modifying this data in addition
to the memory for the strings themselves.

Whenever a variable, array, structure, or union, contains
a pointer, the definition of an initialized variable requires
relocations which in turn requires the variable to be placed
in writable memory. This along with the increased startup
time due to processing of the relocations is not acceptable
for code which is used only in error cases.

For a simple case as the example above a solution entirely
within C can be used by rewriting the array definition like
this:

static const char msgs[][17] = {
[ERR1] = "message for err1",
[ERR2] = "message for err2",
[ERR3] = "message for err3"

};

The result of this code is optimal. The array msgs is
placed entirely in read-only memory since it contains no
pointer. The C code does not have to be rewritten. The
drawback of this solution is that it is not always applica-
ble. If the strings have different lengths it would mean
wasting quite a bit of memory since the second dimen-
sion of the array has to be that of the length of the longest
string plus one. The waste gets even bigger if the values
ERR0, ERR1, and ERR2 are not consecutive and/or do not
start with zero. Every missing entry would mean, in this
case, 17 unused bytes.

There are other methods available for case which cannot
be handled as the example above but none without major
code rewrite.10 One possible solution for the problem is
the following. This code is not as elegant as the original
code but it is still maintainable. Ideally there should be a
tool which generates from a description of the strings the
appropriate data structures. This can be done with a few
lines

static const char msgstr[] =
"message for err1\0"
"message for err2\0"
"message for err3";

static const size_t msgidx[] = {
0,
sizeof ("message for err1"),
sizeof ("message for err1")
+ sizeof ("message for err2")

10If we would write assembler code we could store offsets relative to
a point in the DSO and add the absolute address of the reference point
when using the array elements. This is unfortunately not possible in C.

};

const char *errstr (int nr) {
return msgstr + msgidx[nr];

}

The content of both arrays in this code is constant at
compile time. The references to msgstr and msgidx

in errstr also do not need relocations since the defini-
tions are known to be local. The cost of this code include
three size t words in read-only memory in addition to
the memory for the strings. I.e., we lost all the reloca-
tions (and therefore startup costs) and moved the array
from writable to read-only memory. In this respect the
code above is optimal.

For a more elaborate and less error-prone method of con-
structing such tables is appendix B. The presented code
does not require the programmer to duplicate strings which
must be kept in sync.

2.4.4 Arrays of Function Pointers

The situation for function pointers is very similar to that
of data pointers. If a pointer to a function is used in the
initialization of a global variable the variable the result
gets written to must be writable and non-sharable. For
locally defined functions we get a relative relocation and
for functions undefined in the DSO a normal relocation
which is not lazily performed. The question is how to
avoid the writable variable and the relocations. Unfortu-
nately there is no generally accepted single answer. All
we can do here is to propose a few solutions. Our exam-
ple code for this section is this:

static int a0 (int a) { return a + 0; }
static int a1 (int a) { return a + 1; }
static int a2 (int a) { return a + 2; }

static int (*fps[]) (int) = {
[0] = a0,
[1] = a1,
[2] = a2

};

int add (int a, int b) {
return fps[b] (a);

}

A solution for this problem must inevitably be differ-
ent from what we did for strings where we combined all
strings into one. We can do this for functions as well but
it will look different:
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int add (int a, int b) {
switch (b) {
case 0:

return a + 0;
case 1:

return a + 1;
case 2:

return a + 2;
}

}

Inlining the code as in the code above should certainly be
the preferred solution. The compiler never generates re-
locations for the implementation of a switch statement
and therefore the whole code does not need any reloca-
tion.

Inlining makes sense even if the inlined function are much
larger. Compilers do not have problems with large func-
tions and might even be able to optimize better. The
problem is only the programmer. The original code was
clean and intentionally written using function pointers.
The transformed code might be much less readable. This
makes this kind of optimization one which is not per-
formed until the code is tested and does not need much
maintenance anymore.

A similar problem, though it (unfortunately) is rather rare
today, arises for the use of computed gotos, a gcc ex-
tension for C. Computed gotos can be very useful in
computer-generated code and in highly optimized code.11

The previous example using computed gotos might look
like this:

int add (int a, int b) {
static const void *labels[] = {

&&a0, &&a1, &&a2
};
goto *labels[b];
a0:
return a + 0;
a1:
return a + 1;
a2:
return a + 2;

}

How the code works should be obvious. The array labels
contains pointers to the places in the function where the
labels are placed and the gotos jumps to the place picked
out of the array. The problem with this code is that the ar-
ray contains absolute address which require relative relo-

11Interested readers might want to look at the vfprintf implemen-
tation in the GNU libc.

cations in a DSO and which require that the array labels
is writable and placed in non-sharable memory.

The above code in principal is an implementation of a
switch statement. The difference is that the compiler
never stores absolute addresses which would need relo-
cations of position-independent code is generated. In-
stead the addresses are computed relative to the PIC ad-
dress, producing a constant offset. This offset then has
to be added to the PIC register value which is a minimal
amount of extra work. To optimize the code above a sim-
ilar scheme but be used.

int add (int a, int b) {
static const int offsets[] = {

&&a0-&&a0, &&a1-&&a0, &&a2-&&a0
};
goto *(&&a0 + offsets[b]);

a0:
return a + 0;

a1:
return a + 1;

a2:
return a + 2;

}

Since we do not have direct access to the PIC register at
compile-time and cannot express the computations of the
offsets we have to find another base address. In the code
above it is simply one of the target addresses, a0. The
array offsets is in this case really constant and placed
in read-only memory since all the offsets are known once
the compiler finished generating code for the function.
We now have relative addresses, no relocations are nec-
essary. The type used for offsets might have to be ad-
justed. If the differences are too large (only really pos-
sible for 64-bit architectures, and then only for tremen-
dously large functions) the type might have to be changed
to ssize t or something equivalent. In the other direc-
tion, if it is known that the offsets would fit in a variable
of type short or signed char, these types might be
used to save some memory.

2.4.5 C++ Virtual Function Tables

Virtual function tables, generated for C++ classes with
member functions tagged with virtual, are a special
case. The tables normally involve function pointer which
cause, as seen above, the linker to create relocations. It
is also worthwhile looking at the runtime costs of virtual
functions compared to intra- and inter-DSO calls. But
first the relocation issues.

Usually the virtual function table consists of an array of
function pointers or function descriptors. These represen-
tations have in common that for every slot in the virtual
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function table there must be one relocation and all the
relocations have to be resolved at startup-time. There-
fore having larger a number of virtual function tables or
virtual function tables with many entries impact startup
time.

One other implication is noteworthy. Even though at run-
time normally only one virtual function table is used (since
the name is the same the first is in the lookup scope is
used) all tables must be initialized. The dynamic linker
has no possibility to determine whether the table will be
used at some point or not and therefore cannot avoid ini-
tializing it. Having exactly one virtual function table def-
inition in all the participating DSOs is therefore not only
useful for space conservation reasons.

The cost of each relocation depends on whether the func-
tion being referenced is defined locally and whether it
is exported or not. Only for functions which are explic-
itly hidden by using the visibility attributes or a version
script can the linker use relative relocations which can
be processed quickly. Otherwise relocations with symbol
lookups have to be used. Using the visibility attributes
was mentioned as a possibility to get relative relocations.
But since the virtual function table and the instantiated
member functions are generated by the compiler adding
an attribute cannot be done without some dirty tricks. So
using linker version scripts is really the only possibility.

But even this is often not possible. The virtual functions
can be called not only through the virtual function table
but also directly if the compiler can determine the exact
type of an C++ object. Therefore virtual function in most
cases have to be exported from the DSO. For instance,
the virtual function in the following example is called di-
rectly.

struct foo {
virtual int virfunc () const;

};
foo var;
int bar () { return var.virfunc (); }

The reason is that var is known to have type foo and
not a derived type from which the virtual function table
is used. If the class foo is instantiated in another DSO
not only the virtual function table has to be exported by
that DSO, but also the virtual function virfunc.

If a tiny runtime overhead is acceptable the virtual func-
tion and the externally usable function interface should
be separated. Something like this:

/* In the header. */
struct foo {

virtual int virfunc () const;
int virfunc_do () const;

};

/* In the source code file. */
virtual int foo::virfunc () const
{ return virfunc_do (); }
int foo::virfunc_do () const
{ ...do something... }

In this case the real implementation of the function is in
virfunc do and the virtual function just calls it. There
is no need for the user to call the virtual function di-
rectly as in the function bar above since virfunc do

can be called instead. Therefore the linker version script
could hide the symbol for the virtual function and export
virfunc do to be called from other DSOs. If the user
still calls the virtual function the linker will not be able to
find a definition and the programmer has to know that this
means she has to rewrite the code to use virfunc do.
This makes using the class and the DSO a bit more com-
plex.

The consequence of hiding the virtual function is that the
virtual function table slot for virfunc can be handled
with a relative relocation. This is a big gain not only be-
cause this relocation type is much faster to handle. Since
virtual function tables contain data references the relo-
cation of the virtual function table slots must happen at
startup time.

The improved example above assumes that direct calls
are more frequent than calls through the virtual func-
tion table since there is additional overhead (one extra
function call) involved when calling virfunc. If this as-
sumption is wrong and calls through the virtual function
table are more frequent, then the implementations of the
two functions can be swapped.

In summary, the number and size of virtual function ta-
bles should be kept down since it directly impacts startup
time behavior. If virtual functions cannot be avoided the
implementations of the functions should not be exported.

2.5 Improving Generated Code

On most platforms the code generated for DSOs differs
from code generated for applications. The code in DSOs
needs to be relocatable while application code can usu-
ally assume a fixed load address. This inevitably means
that the code in DSOs is slightly slower and probably
larger than application code. Sometimes this additional
overhead can be measured. Small, often called functions
fall into this category. This section shows some problem
cases of code in DSOs and ways to avoid them.

In the preceding text we have seen that for IA-32 a func-
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tion accessing a global variable has to load determine the
address of the GOT to use the @GOTOFF operation. As-
suming this C code

static int foo;
int getfoo (void)
{ return foo; }

the compiler might end up creating code like this:

getfoo:
call 1f

1: popl %ecx
addl _GLOBAL_OFFSET_TABLE_[.-1b],%ecx
movl foo@GOTOFF(%ecx),%eax
ret

The actual variable access is overshadowed by the over-
head to do so. Loading the GOT address into the %ecx

register takes three instructions. What if this function
is called very often? Even worse: what if the function
getfoo would be defined static or hidden and no pointer
to it are ever available? In this case the caller might al-
ready have computed the GOT address; at least on IA-32
the GOT address is the same for all functions in the DSO
or executable. The computation of the GOT address in
foobar would be unnecessary. The key word in this sce-
nario description is “might”. The IA-32 ABI does not
require that the caller loads the PIC register. Only if a
function calls uses the PLT do we know that %ebx con-
tains the GOT address and in this case the call could come
from any other loaded DSO or the executable. I.e., we re-
ally always have to load the GOT address.

On platforms with better-designed instruction sets the gen-
erated code is not bad at all. For example, the x86-64
version could look like this:

getfoo:
movl foo(%rip),%eax
ret

The x86-64 architecture provides a PC-relative data ad-
dressing mode which is extremely helpful in situations
like this.

Another possible optimization is to require the caller to
load the PIC register. On IA-64 the gp register is used
for this purpose. Each function pointer consist of a pair
function address and gp value. The gp value has to be

loaded before making the call. The result is that for our
running example the generated code might look like this:

getfoo:
addl r14=@gprel(foo),gp;;
ld4 r8=[r14]
br.ret.sptk.many b0

If the caller knows that the called function uses the same
gp value, it can avoid the loading of gp. IA-32 is really a
special case, but still a very common one. So it is appro-
priate to look for a solution.

Any solution must avoid the PIC register entirely. We
propose two possible ways to improve the situation. First,
do not use position-independent code. This will generate
code like

getfoo:
movl foo,%eax
ret

The drawback is that the resulting binary will have text
relocations. The page on which this code resides will
not be sharable, the memory subsystem is more stressed
because of this, a runtime relocation is needed, program
startup is slower because of both these points, and secu-
rity of the program is impacted. Overall, there is a mea-
surable cost associated with not using PIC. This possibil-
ity should be avoided whenever possible. If the DSO is
question is only used once at the same time (i.e., there are
no additional copies of the same program or other pro-
grams using the DSO) the overhead of the copied page is
not that bad. Only in case the page has to be evacuated
from memory we would see measurable deficits since the
page cannot simply be discarded, it must be stored in the
disk swap storage.

The second proposed solution has a bigger impact on the
whole code. Assume this extended example:

static int foo;
static int bar;
int getfoo (void)
{ return foo; }
int getboth (void)
{ return bar+getfoo(); }

If this code gets translated as is, both functions will load
the GOT address to access the global variables. This can
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be avoided by putting all variables in a struct and passing
the address of the struct to the functions which can use it.
For instance, the above code could be rewritten as:

static struct globals {
int foo;
int bar;

} globals;
static int intfoo (struct globals *g)
{ return g->foo; }
int getfoo (void)
{ return intfoo(&globals); }
int getboth (void)
{ return globals.bar+intfoo(&globals); }

The code generated for this example does not compute
the GOT address twice for each call to getboth. The
function intfoo uses the provided pointer and does not
need the GOT address. To preserve the semantics of the
first code this additional function had to be introduced;
it is now merely a wrapper around intfoo. If it is pos-
sible to write the sources for a DSO to have all global
variables in a structure and pass the additional parameter
to all internal functions, then the benefit on IA-32 can be
big.

But it must be kept in mind that the code generated for the
changed example is worse than what would be created for
the original on most other architectures. As can be seen,
in the x86-64 case the extra parameter to intfoo would
be pure overhead since we can access global variables
without the GOT value. On IA-64 marking getfoo as
hidden would allow to avoid the PLT and therefore the gp
register is not reloaded during the call to getfoo. Again,
the parameter is pure overhead. For this reason it is ques-
tionable whether this IA-32 specific optimization should
ever be performed. If IA-32 is the by far most important
platform it might be an option.

2.6 Increasing Security

The explanation of ELF so far have shown the critical im-
portance of the GOT and PLT data structures used at run-
time by the dynamic linker. Since these data structures
are used to direct memory access and function calls they
are also a security liability. If a program error provides
an attacker with the possibility to overwrite a single word
in the address space with a value of his choosing, then
targetting a specific GOT entry is a worthwhile goal. For
some architectures, a changed GOT value might redirect
a call to a function, which is called through the PLT, to
an arbitrary other place. Similarly, if the PLT is modified
in relocations and therefore writable, that memory could
be modified.

An example with security relevance could be a call to

setuid to drop a process’ privileges which is redirected
to perhaps getpid. The attacker could therefore keep
the raised priviledges and later cause greater harm.

This kind of attack would not be possible if the data GOT
and PLT could not be modified by the user program. For
some platforms, like IA-32, the PLT is already read-only.
But the GOT must be modifiable at runtime. The dy-
namic linker is an ordinary part of the program and it
is therefore not possible to require the GOT in a mem-
ory region which is writable by the dynamic linker but
not the rest of the application. Another possibility would
be to have the dynamic linker change the access permis-
sions for the memory pages containing the GOT and PLT
whenever it has to change a value. The required calls to
mprotect are prohibitively expensive, ruling out this so-
lution for any system which aims to be performing well.

At this point we should remember how the dynamic linker
works and how the GOT is used. Each GOT entry be-
longs to a certain symbol and depending on how the sym-
bol is used, the dynamic linker will perform the relo-
cation at startup time or on demand when the symbol
is used. Of interest here are the relocations of the first
group. We know exactly when all non-lazy relocation
are performed. So we could change the access permis-
sion of the part of the GOT which is modified at startup
time to forbid write access after the relocations are done.
Creating objects this way is enabled by the -z relro

linker option. The linker is instructed to move the sec-
tions, which are only modified by relocations, onto sep-
arate memory page and emit a new program header en-
try PT GNU RELRO to point the dynamic linker to these
special pages. At runtime the dynamic linker can then
remove the write access to these pages after it is done.

This is only a partial solution but already very useful.
By using the -z now linker option it is possible to dis-
able all lazy relocation at the expense of increased startup
costs and make all relocations eligible for this special
treatment. For long-running applications which are secu-
rity relevant this is definitely attractive: the startup costs
should not weigh in as much as the gained security. Also,
if the application and DSOs are written well, they avoid
relocations. For instance, the DSOs in the GNU C library
are all build with -z relro and -z now.

The GOT and PLT are not the only parts of the applica-
tion which benefit from this feature. In section 2.4.2 we
have seen that adding as many const to a data object def-
inition as possible has benefits when accessing the data.
But there is more. Consider the following code:

const char *msgs1[] = {
"one", "two", "three"

};
const char *const msgs2[] = {
"one", "two", "three"
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};

It has been explained that neither array can be moved
into the read-only, and therefore shared, data section if
the file is linked into a DSO. The addresses of the strings
pointed to by the elements are known only at runtime.
Once the addresses are filled in, though, the elements of
msgs2 must never be modified again since the array it-
self is defined as const. Therefore gcc stores the array
msgs1 in the .data section while msgs2 is stored into
a section called .data.rel. This .data.rel section is
just like .data but the dynamic linker could take away
write access after the relocations are done. The previ-
ously described handling of the GOT is just a special case
of exactly this feature. Adding as many const as possi-
ble together with the -z relro linker option therefore
protects even program data. This might even catch bugs
where code incorrectly modifies data declared as const.

A completely different issue, but still worth mentioning
in the context of security, are text relocations. Generat-
ing DSOs so that text relocations are necessary (see sec-
tion 2) means that the dynamic linker has to make mem-
ory pages, which are otherwise read-only, temporarily
writable. The period in which the pages are writable is
usually brief, only until all non-lazy relocations for the
object are handled. But even this brief period could be
exploited by an attacker. In a malicious attack code re-
gions could be overwritten with code of the attacker’s
choice and the program will execute the code blindly if it
reaches those addresses.

During the program startup period this is not possible
since there is no other thread available which could per-
form the attack while the pages are writable. The same is
not true if later, when the program already executes nor-
mal code and might have start threads, some DSOs are
loaded dynamically with dlopen. For this reason cre-
ating DSOs with text relocation means unnecessarily in-
creasing the security problems of the system.

Much more critical is that with Security Enhanced Linux
(SELinux) text relocations become a big liability. By de-
fault, the SELinux extensions prevent making executable
data pages writable. Since the kernel cannot distinguish
between the dynamic linker doing this and the program
or an attacker making the change, the abilities of the dy-
namic linker are also restricted. The only ways out are
to grant the program permission to change the protection
(and therefore give attackers the ability to do the same) or
to remove text relocations from all DSOs and PIEs. The
former option should only be used as a last resort.

2.7 Simple Profiling of Interface Usage

The dynamic linker in the GNU C library allows easy
profiling of the way a DSO is used without recompiling

any code. By setting the value of the environment vari-
able LD PROFILE to the shared object name (SONAME)
of a DSO, all uses of interfaces defined in this DSO which
go through a PLT are recorded. In addition time-based
sampling happens as well and all samples which happen
in the profiled DSO are recorded. This is all similar to the
gprof-based profiling which is available on Unix sys-
tems for a long time.

The LD PROFILE variable can be set for arbitrarily many
applications running at the same time. All profiling activ-
ity is recorded in real-time in the same output file which is
usually stored in /var/tmp. Without having to stop any
or all applications currently profiled, the current status
can be examined by running the sprof program. The op-
tions this program understands are similar to those gprof
understand. There are basically three report types, call
pairs, flat profiles, and graph profiles which can all be
requested at once.

How to use these profile results is specific to the applica-
tion. It is easy to locate often called functions and, given
sufficient runtime, functions inside the DSO which run
for a long time. Everybody who used gprof should feel
right at home although DSO profiling has its limitations.

The call data is accumulated by intercepting the calls
made through the PLT. The dynamic linker can do this
without the application noticing it. But if the PLT is not
used, data is not recorded. This is the case if an appli-
cation looks a symbol up using dlsym and then calls it
directly. This might make the profiling data useless.

The solution for this problem is to use the DL CALL FCT

macro the GNU C library’s <dlfcn.h> header defines.
If a looked-up function pointer fctp has been used like
this

foo = fctp (arg1, arg2);

or if you prefer

foo = (*fctp) (arg1, arg2);

the code should be rewritten to look like this:

foo = DL CALL FCT (fctp, (arg1, arg2));

The DL CALL FCT macro contains the necessary magic
to record the calling of the function pointed to by fctp.
If the DSO which contains the symbol is not profiled
nothing happens. It is therefore safe to always use this
macro to call symbols in dynamically loaded DSOs. The
DL CALL FCT macro has a low overhead and so could be
used unconditionally but for production code it is proba-
bly best to avoid it.
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3 Maintaining APIs and ABIs

When writing DSOs which are used as resources in mul-
tiple projects mastering the technical aspects of writing
optimized DSOs is only part of what is needed. Main-
taining the programming interface (API) and the binary
interface (ABI) play an even more important role in a suc-
cessful project. Without API and ABI stability the DSO
would be a burden to use or even unusable. In this sec-
tion we will introduce a number of rules which increase
the chance of success for projects which provides inter-
faces for other projects. We are talking specifically about
library implementations in DSOs but most rules can be
transferred to projects of any kind.

3.1 What are APIs and ABIs?

DSOs are used both at compile time and at run-time. At
compile time the linker tries to satisfy undefined refer-
ences from the definitions in the DSO. The linker then
associates the reference with the definition in the DSO. In
ELF objects this reference is not explicitly present since
the symbol lookup allows finding different definitions at
run-time. But the reference is marked to be satisfied. At
run-time the program can rely on the fact that a defini-
tion is present. If this would not be the case something
changed in the DSO between the time of linking the ap-
plication and the time the application is executed. A
change in which a symbol vanishes is usually fatal. In
some cases definitions in other DSOs can take over but
this is nothing which one can usually be depended on.
A symbol once exported must be available at run-time in
the future.

The ABI of the DSO comprises the collection of all the
definitions which were available for use during the life-
time of the DSO. Maintaining ABI compatibility means
that no definition, also called interface, gets lost. This is
only the easy part, though.

For variable definitions it also means that the size and
structure of the variable does not change in a way the
application cannot handle. What this actually means de-
pends on the situation. If any code outside the DSO di-
rectly accesses the variable, the accessed part of the struc-
ture of the variable must not change. On platforms which
require copy relocations to handle accesses to variables
defined in DSOs in the main application (such as IA-32)
the size of the variable must not change at all. Otherwise
variables might increase in size.

The requirements on function definitions are even harder
to check. The documented semantic of a function must
not change. Defining “semantic” for any non-trivial func-
tion is not easy, though. In the next section we try to
define the requirements of a stable interface. Basically
stability means that correct programs which ran in the
past continue to run in the future. One of the require-

ments therefore is that the parameters of a function do not
change. This brings up an interesting point: in C++ this
is ensured automatically. Functions incorporate in their
mangled names the parameter types. This means that any
change in the signature of a function will result in link-
time and run-time errors and therefore can be detected
easily. This is not the case for variables; their mangled
names only contain the namespace part. Another good
reason to not export variables as part of the API.

3.2 Defining Stability

Having said that stability of the ABI is the highest goal
of DSO maintenance, it is now time to define what sta-
bility means. This might be surprising for some readers
as a naı̈ve view of the problem might be that everything
which worked before has to continue working in the fu-
ture. Everybody who tried this before will see a problem
with it.

Requiring everything to continue to be possible in future
releases would mean that even programs, which use in-
terfaces in an undocumented way, have to be supported.
Almost all non-trivial function interfaces allow parame-
ters to specify values which are outside the documented
interface and most interfaces are influenced by side ef-
fects from other functions or previous calls. Requiring
that such uses of an interface are possible in future revi-
sions means that not only the interface but also the im-
plementation is fixed.

As an example assume the implementation of the strtok
function in the C run-time library. The standard requires
that the first call if strtok gets passed a non-NULL first
parameter. But what happens if the first call has a NULL as
the first parameter? In this case the behavior is undefined
(not even implemented-defined in this case). Some im-
plementations will in this case simply return NULL since
this a common side effect of a possible implementation.
But this is not guaranteed. The function call might as
well cause the application to crash. Both are valid im-
plementations but changing from one to the other in the
lifetime of a DSO would mean an incompatibility.

The question is: does this really constitute an incompat-
ibility? No valid program would ever be affected. Only
programs which are not following the documented inter-
face are affected. And if the change in the implementa-
tion would mean an improvement in efficiency (accord-
ing to whatever measure) this would mean broken appli-
cations prevent progress in the implementation of a DSO.
This is not acceptable.

The definition of stability should therefore use the doc-
umented interface as the basis. Legitimate uses of in-
terfaces should not be affected by changes in the imple-
mentation; using interfaces in an undefined way void the
warranty. The same is true for using completely undoc-
umented, internal symbols. Those must not be used at
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all. While this definition of stability is widely accepted it
does not mean that avoiding or working around changes
introduced by changes to the implementation is wrong. It
just is not necessary if the achievement of stability comes
at a cost which almost always is the case.

Rejecting stability of undefined functionality is one thing,
but what happens if some documented behavior changes?
This is can happen for various reasons:

• The implementation contains a bug. Other imple-
mentations produce different results and this is what
people interested in cross-platform compatibility
are interested in. The old, broken behavior might
be useful, too.

• Similarly, alignment with standards, revisions of
them, or existing practice in other implementations
can promise gains in the future and therefore mak-
ing a change is useful.

• Functionality of an interface gets extended or re-
duced according to availability of underlying tech-
nology. For instance, the introduction of more ad-
vanced harddisk drives can handle requests which
previous versions cannot handle and these addi-
tional requests can be exposed through function in-
terfaces.

Not making the changes can have negative results. Blindly
changing the code will definitely have negative results.
Making the change and still maintaining ABI stability re-
quires the use of versioning.

These incompatible changes to a DSO are not the only
changes which can cause problems. Adding a new inter-
face does not cause problems for existing applications.
But if a new application uses the new interface it will run
into problems if at runtime only the old version of the
DSO, the one without the newly added symbol, is avail-
able. The user can detect this by forcing the dynamic
linker to perform all relocations at load-time by defin-
ing LD BIND NOW to an nonempty value in the environ-
ment before starting the application. The dynamic linker
will abort with an error if an old DSO is used. But forc-
ing the relocations introduces major performance penal-
ties (which is the reason why lazy relocations were in-
troduced in the first place). Instead the dynamic linker
should detect the old DSO version without performing
the relocations.

3.3 ABI Versioning

The term “ABI versioning” refers to the process of asso-
ciating an ABI with a specific version so that if necessary
more than one version of the ABI can be present at any
one time. This is no new concept but it was refined over

time and not all possible versioning methods are available
on all systems.

The first method is the oldest and coarsest grained one. It
is implemented by using a different filename for each in-
compatible DSO. In ELF binaries dependencies on DSOs
are recorded using DT NEEDED entries in the dynamic
segment. The string associated with the entry has to be
the name of an existing DSO. It is usually taken from the
string associated with the DT SONAME entry in the DSO.
Different names can point to different files which makes
coexistence of different DSOs possible and easy. But
while this method is easy to use and such DSOs can eas-
ily be produced, it has a major drawback. For every re-
leased version of the DSO which contains an incompati-
ble change the SONAME would have to be changed. This
can lead to large numbers of versions of the DSO which
each differ only slightly from each other. This wastes
resources especially at run-time when the running appli-
cation need more than one version of the DSO. Another
problem is the case when one single application loads
more than one version of the DSO. This is easily pos-
sible if dependencies (other DSOs the application needs)
pull in independently these different versions. Since the
two versions of the versioned DSO do not know of each
other, the results can be catastrophic. The only safe way
to handle versioning with filenames is to avoid the de-
scribed situation completely. This is most probably only
possible by updating all binaries right away which means
that effectively no versioning happens. The main advan-
tage of filename versioning is that it works everywhere
and can be used as a fallback solution in case no other
versioning method is available.

A second method with finer grained control was devel-
oped by Sun for its Solaris OS. In this method DSOs have
internal versioning methods (filename versioning is ob-
viously available on top of them). The internal version-
ing allows to make compatible changes to a DSO while
avoiding runtime problems with programs running in en-
vironments which have only the old version of the DSO
available. Compatible changes mean adding new inter-
faces or defining additional behavior for existing inter-
faces. Each symbol is associated with a version. The
versions in a file are described by a non-cyclical graph
which forms a hierarchy. If a symbol is associated with a
version which has a predecessor it means that the proper-
ties of the symbol associated with the predecessor version
are also fulfilled in the successor version. In short: a new
version is defined for a new release of a DSO whenever
new features are added. The interfaces which changed
in a compatible way get the new version associated. All
the other interfaces must not change and they keep the
version they had in the previous release.

When the linker uses the versioned DSO to satisfy a de-
pendency it also records the version of the used symbol.
This way it gets for each DSO a list of required versions.
This list is recorded in the binary which is produced.
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With this information available it is now easy for the dy-
namic linker to determine at startup-time whether all the
interfaces the application needs are available in at least
the version which was used at link-time. To do this the
dynamic linker has to go through the list of all required
versions and search in the list of defined versions in the
referenced DSOs for a matching entry. If no matching
entry is found the DSO used at runtime is incompatible
and the program does not start up.

It should be noted that the number of versions is much
lower than the number of symbols and generally inde-
pendent of it. New versions are introduced only for up-
dates of the DSO package or an OS release. Therefore
the version matching is a quick process.

While Sun’s extensions help to cope with parts of the
stability problem, the much larger problem remains to
be solved: how to handle incompatible changes. Every
non-trivial DSO will sooner or later in its lifetime require
some incompatible changes. Even changes made to cor-
rect problems fall sometimes into this category. Some
(broken) program might depend on the old method. So
far there is only one way out: change the SONAME.

With Linux’s symbol versioning mechanism this is not
necessary. ABIs can normally be kept stable for as long
as wanted. The symbol versioning mechanism [4] is an
extension of Sun’s internal versioning mechanism. The
two main differences are: it is possible to have more than
one definition of a given symbol (the associated version
must differ) and the application or DSO linked with the
versioned DSO contains not only a list of the required
version, but also records for each symbol which sym-
bol version was used and from which DSO the definition
came. At runtime this information can then be used to
pick the right version from all the different versions of
the same interface. The only requirement is that the API
(headers, DSO used for linking, and documentation) is
consistent. Every versioned DSO has at most one version
of every API which can be used at link-time. An API
(not ABI) can also vanish completely: this is a way to
deprecate APIs without affecting binary compatibility.

The only real problem of this approach is that if more
than one version of the same API is used in the same ap-
plication. This can only happen if the uses are in different
objects, DSOs or the application itself. From inside one
object only one version can be accessed. In the last 8+
years this hasn’t been found to be a problem in the GNU
C library development. If it becomes a problem it can po-
tentially be worked around by changing the implementa-
tion of the multi-versioned interface to make it aware of
it. Since both versions of the interface are implemented
in the same DSO the versions can coordinate. In general,
most of the implementation of the different versions is
shared and the actual versioned interfaces are normally
wrappers around a general implementation (see below).

If possible, projects implementing generally usable DSOs
should use symbol versioning from day one. Since the
same techniques are used for symbol export control this is
attractive. Unfortunately this versioning scheme requires
changes in the dynamic linker which are currently only
available on Linux and GNU Hurd.12 If this is not possi-
ble use Sun’s internal versioning for compatible changes
(really only applies to Solaris). Otherwise there is no op-
tion but to change the SONAME for every release with
incompatible and possible even releases with compati-
ble changes. But the fact that such limited systems ex-
ist should never make this the only implemented way: if
better mechanisms are available they should be used.

3.4 Restricting Exports

One of the reasons changes between revisions of a DSO
appear incompatible is that users use internal interfaces
of the DSO. This should never happen and usually the
official interfaces are documented and the internal inter-
faces have special names. Still, many users choose to
ignore these rules and then complain when internal inter-
faces change or go away entirely. There is no justification
for these complaints but developers can save themselves
a lot of nerves by restricting the set of interfaces which
are exported from the DSO.

Section 2.2 introduced the mechanisms available for this.
Now that symbol versioning has been introduced we can
extend this discussion a bit. Using symbol maps was in-
troduced as one of the possibilities to restrict the exported
symbols. Ideally symbol maps should be used all the
time, in addition to the other method chosen. The rea-
son is that this allows associating version names with the
interfaces which in turn later allow incompatible changes
to be made without breaking the ABI. The example map
file in section 2.2.5 does not define a version name, it is
an anonymous version map. The version defining a ver-
sion name would look like this:

VERS_1.0 {
global: index;
local: *;

};

In this example VERS 1.0 is an arbitrarily chosen version
name. As far as the static and dynamic linker are con-
cerned version names are simply strings. But for mainte-
nance purposes it is advised that the names are chosen to
include the package name and a version number. For the
GNU C library project, for instance, the chosen names
are GLIBC 2.0, GLIBC 2.1, etc.

12Apparently some of the BSD variants “borrowed” the symbol ver-
sioning design. They never told me though.
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3.5 Handling Compatible Changes (GNU)

The two basic compatible changes, extending functional-
ity of an existing interface and introducing a new inter-
face, can be handled similarly but not exactly the same
way. And we need slightly different code to handle the
Linux/Hurd and the Solaris way. To exemplify the changes
we extend the example in section 2.2. The index func-
tion as defined cannot handle negative parameters. A ver-
sion with this deficiency fixed can handle everything the
old implementation can handle but not vice versa. There-
fore applications using the new interface should be pre-
vented from running if only the old DSO is available. As
a second change assume that a new function indexp1 is
defined. The code would now look like this when using
Linux/Hurd:

static int last;

static int next (void) {
return ++last;

}

int index1__ (int scale) {
return next () << (scale>0 ? scale : 0);

}
extern int index2__ (int)

__attribute ((alias ("index1__")));
asm(".symver index1__,index@VERS_1.0");
asm(".symver index2__,index@@VERS_2.0");

int indexp1 (int scale) {
return index2__ (scale) + 1;

}

Several things need explaining here. First, we do not ex-
plicitly define a function index anymore. Instead index1
is defined (note the trailing underscore characters; lead-
ing underscores are reserved for the implementation). This
function is defined using the new semantic. The extern
declaration following the function definition is in fact a
definition of an alias for the name index1 . This is
gcc’s syntax for expressing this. There are other ways
to express this but this one uses only C constructs which
are visible to the compiler. The reason for having this
alias definition can be found in the following two lines.
These introduce the “magic” to define a versioned sym-
bol with more than one definition. The assembler pseudo-
op .symver is used to define an alias of a symbol which
consists of the official name, @ or @@, and a version name.
The alias name will be the name used to access the sym-
bol. It has to be the same name used in the original code,
index in this case. The version name must correspond
to the name used in the map file (see the example in the
previous section).

What remains to be explained is the use of @ and @@. The

symbol defined using @@ is the default definition. There
must be at most one. It is the version of the symbol used
in all linker runs involving the DSO. No symbol defined
using @ are ever considered by the linker. These are the
compatibility symbols which are considered only by the
dynamic linker.

In this example we define both versions of the symbol to
use the same code. We could have just as well kept the
old definition of the function and added the new defini-
tion. This would have increased the code size but would
provide exactly the same interface. Code which calls the
old version, index@VERS 1.0, would have produced un-
specified behavior with the old DSO and now it would re-
turn the same as a call to index@@VERS 2.0. But since
such a call is invalid anyway nobody can expect that the
ABI does not change in this regard.

Since this code introduced a new version name the map
file has to change, too.

VERS_1.0 {
global: index;
local: *;

};

VERS_2.0 {
global: index; indexp1;

} VERS_1.0;

The important points to note here are that index is men-
tioned in more than one version, indexp1 only appears
in VERS 2.0, the local: definitions only appear in the
VERS 1.0 definition, and the definition of VERS 2.0 refers
to VERS 1.0. The first point should be obvious: we want
two versions of index to be available, this is what the
source code says. The second point is also easy to under-
stand: indexp1 is a new function and was not available
when version 1 of the DSO was released. It is not nec-
essary to mark the definition of indexp1 in the sources
with a version name. Since there is only one definition
the linker is able to figure this out by itself.

The omission of the catch-all local: * case might be
a bit surprising. There is no local: case at all in the
VERS 2.0 definition. What about internal symbols in-
troduced in version 2 of the DSO? To understand this it
must be noted that all symbols matched in the local:

part of the version definition do not actually get a version
name assigned. They get a special internal version name
representing all local symbols assigned. So, the local:
part could appear anywhere, the result would be the same.
Duplicating local: * could possibly confuse the linker
since now there are two catch-all cases. It is no problem
to explicitly mention newly introduced local symbols in
the local: cases of new versions, but it is normally not
necessary since there always should be a catch-all case.
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The fourth point, the VERS 1.0 version being referred
to in the VERS 2.0 definition, is not really important in
symbol versioning. It marks the predecessor relationship
of the two versions and it is done to maintain the similar-
ities with Solaris’ internal versioning. It does not cause
any problem it might in fact be useful to a human reader
so predecessors should always be mentioned.

3.6 Handling Compatible Changes (Solaris)

The code changes to the code of the last section to handle
Solaris’ internal versioning simplify sources and the map
file. Since there can only be one definition of a symbol
(and since a symbol cannot be removed there is exactly
one definition) we do not need any alias and we do not
have to mention index twice in the map file. The source
code would look like this:

static int last;

static int next (void) {
return ++last;

}

int index (int scale) {
return next () << (scale>0 ? scale : 0);

}

int indexp1 (int scale) {
return index (scale) + 1;

}

Note that this only works because the previously defined
semantics of the index function is preserved in the new
implementation. If this would not be the case this change
would not qualify as compatible and the whole discussion
would be moot. The equally simplified map file looks like
this:

VERS_1.0 {
local: *;

};
VERS_2.0 {
global: index; indexp1;

} VERS_1.0;

The change consists of removing the index entry from
version VERS 1.0 and adding it to VERS 2.0. This leaves
no exported symbol in version VERS 1.0 which is OK.
It would be wrong to remove VERS 1.0 altogether after
moving the local: * case to VERS 2.0. Even if the
move would be done the VERS 1.0 definition must be
kept around since this version is named as the predeces-
sor of VERS 2.0. If the predecessor reference would be

removed as well, programs linked against the old DSO
and referencing index in version VERS 1.0 would stop
working. Just like symbols, version names must never be
removed.

The code in this section has one little problem the code
for the GNU versioning model in the previous section
does not have: the implementation of indexp1 refer-
ences the public symbol index and therefore calls it with
a jump to the PLT (which is slower and possibly allows
interposition). The solution for this is left as an exercise
to the user (see section 2.2.7).

The Solaris runtime linker uses the predecessor imple-
mentation to determine when it finds an interface not avail-
able with the version found at link-time. If an applica-
tion was linked with the old DSO constructed from the
code above it would reference index@VERS 1.0. If the
new DSO is found at runtime the version found would
be index@VERS 2.0. In case such a mismatch is found
the dynamic linker looks into the list of symbols and tries
all predecessors in turn until all are checked or a match
is found. In our example the predecessor of VERS 2.0

is VERS 1.0 and therefore the second comparison will
succeed.

3.7 Incompatible Changes

Incompatible changes can only be handled with the sym-
bol versioning mechanism present on Linux and GNU
Hurd. For Solaris one has to fall back to the filename
versioning method.

Having just covered the code for the compatible change,
the differences are not big. For illustration we pick up the
example code once again. This time, instead of making a
compatible change to the semantics of index we change
the interface.

static int last;

static int next (void) {
return ++last;

}

int index1__ (int scale) {
return next () << scale;

}
asm(".symver index1__,index@VERS_1.0");

int index2__ (int scale, int *result) {
if (result < 0

|| result >= 8 * sizeof (int))
return -1;

*result = index1__ (scale);
return 0;

}
asm(".symver index2__,index@@VERS_2.0");
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The interface of index in version VERS 2.0 as imple-
mented in index2 (note: this is the default version as
can be seen by the two @ in the version definition) is quite
different and it can easily be seen that programs which
previously return some more or less sensible value now
can crash because *result is written to. This parameter
would contain garbage if the function would be used with
an old prototype. The index1 definition is the same as
the previous index implementation. We once again have
to define the real function with an alias since the index
names get introduced by the .symver pseudo-ops.

It is characteristic for incompatible changes that the im-
plementations of the different versions require separate
code. But as in this case one function can often be imple-
mented in terms of the other (the new code using the old
code as it is the case here, or vice versa).

The map file for this example looks very much like the
one for the compatible change:

VERS_1.0 {
global: index;
local: *;

};

VERS_2.0 {
global: index;

} VERS_1.0;

We have two definitions of index and therefore the name
must be mentioned by the appropriate sections for the two
versions.

It might also be worthwhile pointing out once again that
the call to index1 in index2 does not use the PLT
and is instead a direct, usually PC-relative, jump.

With a simple function definition, like the one in this ex-
ample, it is no problem at all if different parts of the pro-
gram call different versions of the index interface. The
only requirement is that the interface the caller saw at
compile time, also is the interface the linker finds when
handling the relocatable object file. Since the relocatable
object file does not contain the versioning information it
is not possible to keep object files around and hope the
right interface is picked by the linker. Symbol versioning
only works for DSOs and executables. If it is necessary
to reuse relocatable object files later, it is necessary to
recreate the link environment the linker would have seen
when the code was compiled. The header files (for C,
and whatever other interface specification exists for other
languages) and the DSOs which are used for linking to-
gether form the API. It is not possible to separate the two
steps, compiling and linking. For this reason packaging
systems, which distinguish between runtime and devel-
opment packages, put the headers and linkable DSOs in

one file, while the files needed at runtime are in another.

3.8 Using Versioned DSOs

All methods which depend on symbol versioning have
one requirement in common: it is absolutely necessary
for the users of the DSO to always link with it. This might
sound like a strange requirement but it actually is not
since it is not necessary to provide definitions for all ref-
erences when creating DSOs. I.e., the linker is perfectly
happy if a symbol is completely undefined in a DSO. It
is only the dynamic linker which would complain: if no
object is in scope which defines the undefined symbol the
lookup fails.

This method is sometimes, rarely, a useful method. If a
DSO is behaving differently depending on the context it
is loaded in and if the context has to provide some call-
backs which make the DSO complete, using undefined
symbols is OK. But this does not extend to definitions
from DSOs which use symbol versioning.

The problem is that unless the DSO containing the defi-
nitions is used at link time, the linker cannot add a ver-
sion name to the undefined reference. Following the rules
for symbol versioning [4] this means the earliest version
available at runtime is used which usually is not the in-
tended version. Going back to the example in section 3.7,
assume the program using the DSO would be compiled
expecting the new interface index2 . Linking happens
without the DSO, which contains the definition. The ref-
erence will be for index and not index@@VERS 2.0. At
runtime the dynamic linker will find an unversioned ref-
erence and versioned definitions. It will then select the
oldest definition which happens to be index1 . The re-
sult can be catastrophic.

It is therefore highly recommended to never depend on
undefined symbols. The linker can help to ensure this if
-Wl,-z,defs is added to compiler command line. If it
is really necessary to use undefined symbols the newly
built DSO should be examined to make sure that all ref-
erences to symbols in versioned DSOs are appropriately
marked.

3.9 Inter-Object File Relations

Part of the ABI is also the relationship between the var-
ious participating executables and DSOs which are cre-
ated by undefined references. It must be ensured that
the dynamic linker can locate exactly the right DSOs at
program start time. The static linker uses the SONAME
of a DSO in the record to specify the interdependencies
between two objects. The information is stored in the
DT NEEDED entries in the dynamic section of the object
with the undefined references. Usually this is only a file
name, without a complete path. It is then the task of the
dynamic linker to find the correct file at startup time.
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This can be a problem, though. By default the dynamic
linker only looks into a few directories to find DSOs (on
Linux, in exactly two directories, /lib and /usr/lib).
More directories can be added by naming them in the
/etc/ld.so.conf file which is always consulted by
the dynamic linker. Before starting the application, the
user can add LD LIBRARY PATH to the environment of
the process. The value is another list of directories which
are looked at.

But all this means that the selection of the directories is
under the control of the administrator. The program’s au-
thor can influence these setting only indirectly by doc-
umenting the needs. But there is also way for the pro-
grammer to decide the path directly. This is sometimes
important. The system’s setting might not be usable by
all programs at the same time.

For each object, DSO as well as executable, the author
can define a “run path”. The dynamic linker will use the
value of the path string when searching for dependencies
of the object the run path is defined in. Run paths comes
is two variants, of which one is deprecated. The runpaths
are accessible through entries in the dynamic section as
field with the tags DT RPATH and DT RUNPATH. The dif-
ference between the two value is when during the search
for dependencies they are used. The DT RPATH value is
used first, before any other path, specifically before the
path defined in the LD LIBRARY PATH environment vari-
able. This is problematic since it does not allow the user
to overwrite the value. Therefore DT RPATH is depre-
cated. The introduction of the new variant, DT RUNPATH,
corrects this oversight by requiring the value is used after
the path in LD LIBRARY PATH.

If both a DT RPATH and a DT RUNPATH entry are avail-
able, the former is ignored. To add a string to the run
path one must use the -rpath or -R for the linker. I.e.,
on the gcc command line one must use something like

gcc -Wl,-rpath,/some/dir:/dir2 file.o

This will add the two named directories to the run path
in the order in which say appear on the command line. If
more than one -rpath/-R option is given the parameters
will be concatenated with a separating colon. The order
is once again the same as on the linker command line.
For compatibility reasons with older version of the linker
DT RPATH entries are created by default. The linker op-
tion --enable-new-dtags must be used to also add
DT RUNPATH entry. This will cause both, DT RPATH and
DT RUNPATH entries, to be created.

There are a number of pitfalls one has to be aware of
when using run paths. The first is that an empty path
represents the current working directory (CWD) of the
process at runtime. One can construct such an empty path
by explicitly adding such a parameter (-Wl,-R,"") but
also, and this is the dangerous part, by two consecutive

colons or a colon at the beginning or end of the string.
That means the run path value ”:/home::/usr:” searches
the CWD, home, the CWD again, usr, and finally the
CWD again.13 It is very easy to add such an empty path.
Makefiles often contain something like this:

RPATH = $(GLOBAL\_RPATH):$(LOCAL\_RPATH)
LDFLAGS += -Wl,-rpath,$(RPATH)

If either GLOBAL RPATH or LOCAL RPATH is empty the
dynamic linker will be forced to look in the CWD. When
constructing strings one must therefore always be careful
about empty strings.

The second issue run paths have is that either that paths
like /usr/lib/someapp are not “relocatable”. I.e., the
package cannot be installed in another place by the user
without playing tricks like creating symbolic links from
/usr/lib/someapp to the real directory. The use of rel-
ative paths is possible, but highly discouraged. It might
be OK in application which always control their CWD,
but in DSOs which are used in more than one application
using relative paths means calling for trouble since the
application can change the CWD.

A solution out of the dilemma is an extension syntax for
all search paths (run paths, but also LD LIBRARY PATH).
If one uses the string $ORIGIN this will represent the ab-
solute path of the directory the file containing this run
path is in. One common case for using this “dynamic
string token” (DST) is a program (usually installed in a
bin/ directory) which comes with one or more DSOs it
needs, which are installed in the corresponding lib/ di-
rectory. For instance the paths could be /bin and /lib

or /usr/bin and /usr/lib. In such a case the run
path of the application could contain $ORIGIN/../lib

which will expand in the examples case just mentioned
to /bin/../lib and /usr/bin/../lib respectively.
The effective path will therefore point to the appropriate
lib/ directory.

$ORIGIN is not the only DST available. The GNU libc
dynamic currently recognizes two more. The first is $LIB
which is useful on platforms which can run in 32- and 64-
bit mode (maybe more in future). On such platforms the
replacement value in 32-bit binaries is lib and for 64-
bit binaries it is lib64. This is what the system ABIs
specify as the directories for executable code. If the plat-
form does not know more than one mode the replacement
value is lib. This DST makes it therefore easy to write
Makefiles creating the binaries since no knowledge about
the differentiation is needed.

The last DST is $PLATFORM. It is replaced by the dy-
13The dynamic linker is of course free to avoid the triple search since

after the first one it knows the result.
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namic linker with an architecture-specific string repre-
senting the name of the platform (as the name suggests).
For instance, it will be replaced with i386 or i686 on
IA-32 machines, depending on the CPU(s) used. This al-
lows using better optimized versions of a DSO if the CPU
supports it. On system with the GNU libc this is gener-
ally not needed since the dynamic linker by itself and by
default looks for such subdirectories. The actual rules are
quite complicated and not further discussed here. What
is important to remember is that the $PLATFORM DST is
not really useful; it is mainly available for compatibility
with Solaris’s dynamic linker.

Another aspect of DT NEEDED entries worth looking at
is whether they are necessary in the first place. Espe-
cially when the above guideline of using the -z defs

linker option is followed, many projects name all kinds of
DSOs on the linker command line, whether they are re-
ally needed or not in the specific case. This problem is in-
tensified with useless wrappers like pkg-config which
just add tons of dependencies to the link time. This might
have been OK in the days of static linking, but the de-
fault for DSOs appearing on the linker command line
is, that they are always added to the result’s dependency
list, whether they are actually used or not. To determine
whether an executable or DSO has such unnecessary de-
pendencies the ldd script can be used:

$ ldd -u -r \
/usr/lib/libgtk-x11-2.0.so.0.600.0

Unused direct dependencies:

/usr/lib/libpangox-1.0.so.0
/lib/libdl.so.2

These references can be manually eliminated by avoiding
to name the DSO on the linker command line. Alterna-
tively the --as-needed linker option can be used. If
this option is used, all DSOs named on the command line
after the option are only added to the dependency list if
they are really needed. This mode can be disabled again
with the --no-as-needed option. This way the lazy
programmer can still name all the DSOs which might be
needed at all times. The linker does all the hard work.

This process should not be executed mindlessly, though.
Not having the DSO on the direct dependency list any-
more means the symbol lookup path is altered. If the
DSO in question contains a definition of a symbol which
also appears in a second DSO and now that second DSO
is earlier in the lookup path, the program’s semantics
might be altered. This is a rare occurrence, though.
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A Counting Relocations

The following script computes the number of normal and relative relocations as well as the number of PLT entries
present in a binary. If an appropriate readelf implementation is used it can also be used to look at all files in an
archive. If prelink [7] is available and used, the script also tries to provide information about how often the DSO is
used. This gives the user some idea how much “damage” an ill-written DSO causes.

#! /usr/bin/perl
eval "exec /usr/bin/perl -S $0 $*"

if 0;
# Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005 Ulrich Drepper
# Written by Ulrich Drepper <drepper@gmail.com>, 2000.

# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License version 2 as
# published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */

for ($cnt = 0; $cnt <= $#ARGV; ++$cnt) {
$relent = 0;
$relsz = 0;
$relcount = 0;
$pltrelsz = 0;
$extplt = 0;
$users = 0;

open (READLINK, "readlink -f $ARGV[$cnt] |") || die "cannot open readlink";
while (<READLINK>) {

chop;
$fullpath = $_;

}
close (READLINK);

open (READELF, "eu-readelf -d $ARGV[$cnt] |") || die "cannot open $ARGV[$cnt]";
while (<READELF>) {
chop;
if (/.* \(RELENT\) *([0-9]*).*/) {

$relent = $1 + 0;
} elsif (/.* \(RELSZ\) *([0-9]*).*/) {

$relsz = $1 + 0;
} elsif (/.* \(RELCOUNT\) *([0-9]*).*/) {

$relcount = $1 + 0;
} elsif (/.* \(PLTRELSZ\) *([0-9]*).*/) {

$pltrelsz = $1 + 0;
}

}
close (READELF);

open (READELF, "eu-readelf -r $ARGV[$cnt] |") || die "cannot open $ARGV[$cnt]";
while (<READELF>) {
chop;
if (/.*JU?MP_SLOT *0+ .*/) {

++$extplt;
}
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}
close (READELF);

if (open (PRELINK, "/usr/sbin/prelink -p 2>/dev/null | fgrep \"$fullpath\" |")) {
while (<PRELINK>) {

++$users;
}
close(PRELINK);

} else {
$users = -1;

}

printf("%s: %d relocations, %d relative (%d%%), %d PLT entries, %d for local syms (%d%%)",
$ARGV[$cnt], $relent == 0 ? 0 : $relsz / $relent, $relcount,
$relent == 0 ? 0 : ($relcount * 100) / ($relsz / $relent),
$relent == 0 ? 0 : $pltrelsz / $relent,
$relent == 0 ? 0 : $pltrelsz / $relent - $extplt,
$relent == 0 ? 0 : ((($pltrelsz / $relent - $extplt) * 100)

/ ($pltrelsz / $relent)));
if ($users >= 0) {
printf(", %d users", $users);

}
printf("\n");

}
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B Automatic Handler of Arrays of String Pointers

The method to handle arrays of string pointers presented in section 2.4.3 show the principle method to construct data
structures which do not require relocations. But the construction is awkward and error-prone. Duplicating the strings
in multiple places in the sources always has the problem of keeping them in sync.

Bruno Haible suggested something like the following to automatically generate the tables. The programmer only has
to add the strings, appropriately marked, to a data file which is used in the compilation. The framework in the actual
sources looks like this:

#include <stddef.h>

#define MSGSTRFIELD(line) MSGSTRFIELD1(line)
#define MSGSTRFIELD1(line) str##line
static const union msgstr_t {
struct {

#define _S(n, s) char MSGSTRFIELD(__LINE__)[sizeof(s)];
#include "stringtab.h"
#undef _S
};
char str[0];

} msgstr = { {
#define _S(n, s) s,
#include "stringtab.h"
#undef _S
} };
static const unsigned int msgidx[] = {
#define _S(n, s) [n] = offsetof(union msgstr_t, MSGSTRFIELD(__LINE__)),
#include "stringtab.h"
#undef _S
};
const char *errstr (int nr) {
return msgstr.str + msgidx[nr];

}

The string data has to be provided in the file stringtab.h. For the example from section 2.4.3 the data would look
like this:

_S(ERR1, "message for err1")
_S(ERR3, "message for err3")
_S(ERR2, "message for err2")

The macro S takes two parameters: the first is the index used to locate the string and the second is the string itself.
The order in which the strings are provided is not important. The value of the first parameter is used to place the offset
in the correct slot of the array. It is worthwhile running these sources through the preprocessor to see the results. This
way of handling string arrays has the clear advantage that strings have to be specified only in one place and that the
order they are specified in is not important. Both these issues can otherwise easily lead to very hard to find bugs.

The array msgidx in this cases uses the type unsigned int which is in most cases 32 bits wide. This is usually far
too much to address all bytes in the string collectionin msgstr. So, if size is an issue the type used could be uint16 t

or even uint8 t.

Note that both arrays are marked with const and therefore are not only stored in the read-only data segment and there-
fore shared between processes, preserving, precious data memory, making the data read-only also prevents possible
security problems resulting from overwriting values which can trick the program into doing something harmful.
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2004-8-4 Warn about aliases of static objects. Significant change to section 2.2 to introduce new features of gcc 4.0.
Version 1.99.
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2004-9-23 Document RTLD DEEPBIND and sprof. Version 2.2.
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